首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  国内免费   3篇
  2023年   1篇
  2021年   1篇
  2018年   1篇
  2011年   1篇
  2008年   1篇
  2003年   2篇
排序方式: 共有7条查询结果,搜索用时 31 毫秒
1
1.
中枢神经系统(central nervous system,CNS)疾病严重影响人们的生活,给社会、家庭带来沉重负担。CNS疾病治疗的瓶颈是血脑屏障(blood brain barrier,BBB)的存在,严重限制了药物从血液转运到CNS。靶脑型纳米粒子的开发,是克服BBB的限制作用、发展治疗CNS疾病药物的一个有效途径。新近发展的修饰技术,使蛋白质或肽、表面活性剂、脂类等生物分子与纳米粒子相偶联,产生了多种类型的靶脑型纳米粒子。不同的纳米粒子尽管入脑机制不同,但均可以使药物在脑中聚集,达到治疗CNS疾病的目的。  相似文献   
2.
以能通透生物膜的膜穿透肽为载体,使其携带DNA或寡核苷酸进入细胞,这种新型的核酸转运方法不仅体内外均有效,而且毒性很低。预计该方法在未来的生物工程和基因治疗中将发挥重要作用。  相似文献   
3.
膜穿透肽的应用与穿膜机制研究   总被引:1,自引:0,他引:1  
陈向  付爱玲 《生命的化学》2008,28(3):311-314
膜穿透肽(membrane penetrating peptide,MPP)能引导大分子物质穿透细胞膜.应用MPP为载体,引导神经营养分子通透血脑屏障进入神经元,能有效治疗中枢神经系统疾病;在基因治疗方面, MPP引导干扰小RNA进行基因治疗,避免了使用病毒载体等一些传统基因治疗方法的毒副作用.穿膜机制研究证实 MPP通透细胞膜的过程分为三个阶段:与细胞表面结合;细胞巨胞饮摄取 MPP;MPP从胞饮体中逃逸入胞质,其中最后阶段是限速步骤.随着对多肽片段的深入研究和穿膜机制的逐渐明晰,MPP的应用将会更为深入和广泛.  相似文献   
4.
线粒体是细胞内的一种多功能细胞器,主要负责能量产生、细胞凋亡等生命过程。线粒体缺陷与临床上百种疾病相关。越来越多的研究已表明,细胞外的线粒体可被细胞内吞,进入到细胞内,然后以完整的形态发挥作用。研究发现,线粒体是对氧含量和酸碱度极为敏感的细胞器,细胞内环境可影响线粒体的功能。外源线粒体进入到生理环境中的细胞后,将提高细胞能量供应、促进细胞存活;但线粒体进入到缺氧和酸性的肿瘤组织后,将大量产生氧自由基、诱发细胞死亡。线粒体这种环境响应性的药理特性,可应用于清除肿瘤细胞、恢复受损组织的功能。目前线粒体已用于治疗中枢神经系统疾病(帕金森氏病、抑郁症、精神分裂症等)、外周系统疾病(缺血性心肌损伤、脂肪肝、肺气肿等)和肿瘤等,为线粒体相关疾病的治疗提供了新的方法。文中对这种新型生物治疗方法的研究进展、医学应用和存在的挑战进行综述。  相似文献   
5.
【目的】采用盐酸硫胺(aneurine hydrochloride,VB1)作为保护配体和还原剂,制备荧光稳定的VB1保护的铜纳米簇(aneurine hydrochloride protected copper nanoclusters, VB1-Cu NCs),并用于痕量Fe3+的检测。【方法】使用VB1作为保护配体和还原剂,合成VB1-Cu NCs。通过紫外-可见吸收光谱、荧光光谱和粒径进行表征,并探究了VB1-Cu NCs的pH响应性、对Fe3+的选择性以及线性范围。【结果】制备的VB1-CuNCs具有良好的水溶性,优异的稳定性和超细的尺寸。VB1-Cu NCs作为荧光探针检测Fe3+,在0–5μmol/L和5–500μmol/L范围内均呈良好的线性,检测限为0.085μmol/L。利用该方法检测实际微生物样品毛癣菌(Trichophyto...  相似文献   
6.
本科全英文教学已在国内高校蓬勃发展。微生物学是一门具有国际通用性特点的专业必修课,目前在国内对该门课程实行全英文授课的高校越来越多,但是不少高校的全英文教学存在语言交流和理解障碍、评价机制不健全等诸多方面的问题。为解决这些问题,我们提出采用双语教学+全英文共享课程这种符合中国学生特点的混合式教学方式,克服微生物学教学过程中师生面临的困难,促进微生物学英文教学的健康发展。  相似文献   
7.
蛋白质转导及其内在化机制   总被引:2,自引:0,他引:2  
付爱玲  孙曼霁 《生命科学》2003,15(5):266-269
蛋白质转导是新近发展起来的向细胞内快速输送外源性大分子或高极性分子的有效途径。它实质上是一些蛋白质,尤其是病毒蛋白上被称为蛋白质转导区(PTD)的小片段,蛋白质和其他物质,如DNA、脂质体、纳米颗粒、环孢素A等与之结合后,即能够被携带进入细胞或穿过血脑屏障。蛋白质转导的内在化机制目前尚不清楚,可能与带正电荷(富Arg)的PTD肽与细胞膜上带负电荷的硫酸乙酰肝素有关,但不排除其他内在化机制。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号