首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   17篇
  2021年   3篇
  2019年   4篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   6篇
  2013年   5篇
  2012年   14篇
  2011年   8篇
  2010年   6篇
  2009年   5篇
  2008年   7篇
  2007年   8篇
  2006年   5篇
  2005年   6篇
  2004年   3篇
  2003年   9篇
  2002年   6篇
  2001年   3篇
  2000年   6篇
  1999年   10篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   5篇
  1992年   5篇
  1991年   6篇
  1990年   4篇
  1989年   5篇
  1988年   6篇
  1986年   2篇
  1982年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1961年   1篇
排序方式: 共有168条查询结果,搜索用时 31 毫秒
1.
The Oenothera mitochondrial genome contains only a gene fragment for ribosomal protein S12 (rps12), while other plants encode a functional gene in the mitochondrion. The complete Oenothera rps12 gene is located in the nucleus. The transit sequence necessary to target this protein to the mitochondrion is encoded by a 5'-extension of the open reading frame. Comparison of the amino acid sequence encoded by the nuclear gene with the polypeptides encoded by edited mitochondrial cDNA and genomic sequences of other plants suggests that gene transfer between mitochondrion and nucleus started from edited mitochondrial RNA molecules. Mechanisms and requirements of gene transfer and activation are discussed.  相似文献   
2.
Summary Fed-batch fermentations of Acidothermus cellulolyticus utilizing mixtures of cellulose and sugars were investigated for potential improvements in cellulase enzyme production. In these fermentations, we combined cellulose from several sources with various simple sugars at selected concentrations. The best source of cellulose for cellulase production was found to be ball-milled Solka Floc at 15 g/l. Fed-batch fermentations with cellobiose and Solka Floc increased cell mass only slightly, but succeeded in significantly enhancing cellulase synthesis compared to batch conditions. Maximum cellulase activities obtained from fermentations initiated with 2.5 g cellobiose/l and 15 g Solka Floc/l were 0.187 units (U)/ml, achieved by continuous feeding to maintain <0.1 g cellobiose/l, and 0.215 U/ml using the same initial medium when 2.5 g cellobiose/l was step-fed after the sugar was nearly consumed. In batch, dual-substrate systems consisting of simple sugars with Solka Floc, substrate inhibition was evident in terms of specific growth rates, specific productivity values, and maximum enzyme yields. Limiting concentrations of glucose or sucrose at 5 g/l, and cellobiose at 2.5 g/l, in the presence of Solka Floc, yielded cellulase activities of 0.134, 0.159, and 0.164 U/ml, respectively. Offprint requests to: M. E. Himmel  相似文献   
3.
Using synthetic oligonucleotides deduced from the N-terminal amino acid sequence of purified mitoribosomal protein (mt r-protein) YmL27, the corresponding nuclear gene MRP-L27 of the yeast Saccharomyces cerevisiae has been cloned and sequenced. The MRP-L27 gene codes for 146 amino acids and is located on chromosome X. The mature YmL27 protein consists of 130 amino acids - after cleaving the putative mitochondrial signal peptide - with a net charge of +17 and a calculated relative molecular mass of 14,798 Da. The YmL27 protein as well as the yeast mitoribosomal protein YmL31, which had been characterized and its gene (MRP-L31) cloned previously, is essential for mitochondrial function as shown by the inability of gene disrupted mutants for the MRP-L27 or MRP-L31 genes to grow on non-fermentable carbon sources.  相似文献   
4.
Aspen (Populus tremuloides) and black cottonwood (Populus trichocarpa) organosolv pulps produced in a wide range of solvent composition (between 30 and 70% by volume of methanol) and catalysts (H(2)SO(4) and H(3)PO(4)) such that the cooking liquor pH 相似文献   
5.
6.
7.
Conjugative transfer of bacterial plasmids is the most efficient way of horizontal gene spread, and it is therefore considered one of the major reasons for the increase in the number of bacteria exhibiting multiple-antibiotic resistance. Thus, conjugation and spread of antibiotic resistance represents a severe problem in antibiotic treatment, especially of immunosuppressed patients and in intensive care units. While conjugation in gram-negative bacteria has been studied in great detail over the last decades, the transfer mechanisms of antibiotic resistance plasmids in gram-positive bacteria remained obscure. In the last few years, the entire nucleotide sequences of several large conjugative plasmids from gram-positive bacteria have been determined. Sequence analyses and data bank comparisons of their putative transfer (tra) regions have revealed significant similarities to tra regions of plasmids from gram-negative bacteria with regard to the respective DNA relaxases and their targets, the origins of transfer (oriT), and putative nucleoside triphosphatases NTP-ases with homologies to type IV secretion systems. In contrast, a single gene encoding a septal DNA translocator protein is involved in plasmid transfer between micelle-forming streptomycetes. Based on these clues, we propose the existence of two fundamentally different plasmid-mediated conjugative mechanisms in gram-positive microorganisms, namely, the mechanism taking place in unicellular gram-positive bacteria, which is functionally similar to that in gram-negative bacteria, and a second type that occurs in multicellular gram-positive bacteria, which seems to be characterized by double-stranded DNA transfer.  相似文献   
8.
In higher plants, genes for subunits of respiratory chain complex I (NADH:ubiquinone oxidoreductase) have so far been identified solely in organellar genomes. At least nine subunits are encoded by the mitochondrial DNA and 11 homologues by the plastid DNA. One of the 'key' components of complex I is the subunit binding the substrate NADH. The corresponding gene for the mitochondrial subunit has now been cloned and identified in the nuclear genome from potato ( Solanum tuberosum ). The mature protein consists of 457 amino acids and is preceded by a mitochondrial targeting sequence of 30 amino acids. The protein is evolutionarily related to the NADH-binding subunits of complex I from other eukaryotes and is well conserved in the structural domains predicted for binding the substrate NADH, the FMN and one iron-sulphur cluster. Expression examined in different potato tissues by Northern blot analysis shows the highest steady-state mRNA levels in flowers.
Precursor proteins translated in vitro from the cDNA are imported into isolated potato mitochondria in a ΔΨ-dependent manner. The processed translation product has an apparent molecular mass of 55 kDa, identical to the mature protein present in the purified plant mitochondrial complex I. However, the in-vitro translated protein is not imported into isolated chloroplasts. To further investigate whether the complex I-like enzyme in chloroplasts contains an analogous subunit for binding of NAD(P)H, different plastid protein fractions were tested with a polyclonal antiserum directed against the bovine 51 kDa NADH-binding subunit. In none of the different thylakoid or stroma protein fractions analysed were specific crossreactive polypeptides detected. These results are discussed particularly with respect to the structure of a potential complex I in chloroplasts and the nature of its acceptor site.  相似文献   
9.
A number of plasmid-encoded gene systems are thought to stabilize plasmids by killing plasmid-free cells (also termed post-segregational killing or plasmid addiction). Here we analyse the mechanisms of plasmid stabilization by ccd of F, parDE of RP4 and parD of R1, and compare them to hok/sok of R1. To induce synchronous plasmid loss we constructed a novel plasmid replication-arrest system, which possesses the advantage that plasmid replication can be completely arrested by the addition of IPTG, a non-metabolizable inducer. Using isogenic plasmid constructions we have found, for the first time, consistent correlation between the effect on steady-state loss rates and the effect on cell proliferation in the plasmid replication-arrest assay for all three systems. The parDE system had the most pronounced effect both on plasmid stabilization and on plasmid retention after replication arrest. In contrast, ccd and parD both exhibited weaker effects than anticipated from previously published results. Thus, our results indicate that the function and efficiencies of some of the systems should be reconsidered. Our results are consistent with the previously postulated hypothesis that ccd and parDE act by killing plasmid-free segregants, whereas parD seems to act by inhibiting cell division of plasmid-free segregants.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号