首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The minimal requirements to support protein import into mitochondria were investigated in the context of the phenomenon of ongoing gene transfer from the mitochondrion to the nucleus in plants. Ribosomal protein 10 of the small subunit is encoded in the mitochondrion in soybean and many other angiosperms, whereas in several other species it is nuclear encoded and thus must be imported into the mitochondrial matrix to function. When encoded by the nuclear genome, it has adopted different strategies for mitochondrial targeting and import. In lettuce (Lactuca sativa) and carrot (Daucus carota), Rps10 independently gained different N-terminal extensions from other genes, following transfer to the nucleus. (The designation of Rps10 follows the following convention. The gene is indicated in italics. If encoded in the mitochondrion, it is rps10; if encoded in the nucleus, it is Rps10.) Here, we show that the N-terminal extensions of Rps10 in lettuce and carrot are both essential for mitochondrial import. In maize (Zea mays), Rps10 has not acquired an extension upon transfer but can be readily imported into mitochondria. Deletion analysis located the mitochondrial targeting region to the first 20 amino acids. Using site directed mutagenesis, we changed residues in the first 20 amino acids of the mitochondrial encoded soybean (Glycine max) rps10 to the corresponding amino acids in the nuclear encoded maize Rps10 until import was achieved. Changes were required that altered charge, hydrophobicity, predicted ability to form an amphipathic alpha-helix, and generation of a binding motif for the outer mitochondrial membrane receptor, translocase of the outer membrane 20. In addition to defining the changes required to achieve mitochondrial localization, the results demonstrate that even proteins that do not present barriers to import can require substantial changes to acquire a mitochondrial targeting signal.  相似文献   

3.
The gene encoding ribosomal protein S14 (rps14) in Oenothera mitochondria is located upstream of the cytochrome b gene (cob). Sequence analysis of independently derived cDNA clones covering the entire rps14 coding region shows two nucleotides edited from the genomic DNA to the mRNA derived sequences by C to U modifications. A third editing event occurs four nucleotides upstream of the AUG initiation codon and improves a potential ribosome binding site. A CGG codon specifying arginine in a position conserved in evolution between chloroplasts and E. coli as a UGG tryptophan codon is not edited in any of the cDNAs analysed. An inverted repeat 3' of an unidentified open reading frame is located upstream of the rps14 gene. The inverted repeat sequence is highly conserved at analogous regions in other Oenothera mitochondrial loci.  相似文献   

4.
5.
An intact gene for the ribosomal protein S19 (rps19) is absent from Oenothera mitochondria. The conserved rps19 reading frame found in the mitochondrial genome is interrupted by a termination codon. This rps19 pseudogene is cotranscribed with the downstream rps3 gene and is edited on both sides of the translational stop. Editing, however, changes the amino acid sequence at positions that were well conserved before editing. Other strange editings create translational stops in open reading frames coding for functional proteins. In coxI and rps3 mRNAs CGA codons are edited to UGA stop codons only five and three codons, respectively, downstream to the initiation codon. These aberrant editings in essential open reading frames and in the rps19 pseudogene appear to have been shifted to these positions from other editing sites. These observations suggest a requirement for a continuous evolutionary constraint on the editing specificities in plant mitochondria.  相似文献   

6.
A gene coding for a protein that shows homologies to prokaryotic ribosomal protein S2 is present in the mitochondrial (mt) genome of wheat (Triticum aestivum). The wheat gene is transcribed as a single mRNA which is edited by C-to-U conversions at seven positions, all resulting in alteration of the encoded amino acid. Homologous gene sequences are also present in the mt genomes of rice and maize, but we failed to identify the corresponding sequences in the mtDNA of all dicotyledonous species tested; in these species the mitochondrial RPS2 is probably encoded in the nucleus. The protein sequence deduced from the wheat rps2 gene sequence has a long C-terminal extension when compared to other prokaryotic RPS2 sequences. This extension presents no similarity with any known sequence and is not conserved in the maize or rice mitochondrial rps2 gene. Most probably, after translation, this peptide extension is processed by a specific peptidase to give rise to the mature wheat mitochondrial RPS2.  相似文献   

7.
A gene coding for a protein that shows homologies to prokaryotic ribosomal protein S2 is present in the mitochondrial (mt) genome of wheat (Triticum aestivum). The wheat gene is transcribed as a single mRNA which is edited by C-to-U conversions at seven positions, all resulting in alteration of the encoded amino acid. Homologous gene sequences are also present in the mt genomes of rice and maize, but we failed to identify the corresponding sequences in the mtDNA of all dicotyledonous species tested; in these species the mitochondrial RPS2 is probably encoded in the nucleus. The protein sequence deduced from the wheat rps2 gene sequence has a long C-terminal extension when compared to other prokaryotic RPS2 sequences. This extension presents no similarity with any known sequence and is not conserved in the maize or rice mitochondrial rps2 gene. Most probably, after translation, this peptide extension is processed by a specific peptidase to give rise to the mature wheat mitochondrial RPS2. Received: 20 November 1997 / Accepted: 29 January 1998  相似文献   

8.
9.
10.
The pea mitochondrial genome contains a truncated rps7 gene lacking ca. 40 codons at its 5 terminus. This single-copy sequence is immediately downstream of and slightly overlapping an actively transcribed and edited reading frame of 744 bp (designated ccb248) homologous to the bacterial helC gene which encodes a subunit of the ABC-type heme transporter involved in cytochrome c biogenesis. This region of mitochondrial DNA appears recombinogenic, and the carboxy-termini of helC-type proteins are predicted to vary in sequence and length among plants. Sequences corresponding to the 5 coding region of rps7 were not detected elsewhere in the pea mitochondrial genome using wheat rps7 probes, and only a very short internal rps7 segment was observed in soybean mitochondrial DNA. The presence of rps7-homologous sequences in the nuclear genomes of pea and soybean is consistent with the recent transfer of a functional mitochondrial rps7 gene to the nucleus in certain plant lineages.  相似文献   

11.
12.
13.
Often during flowering plant evolution, ribosomal protein genes have been lost from the mitochondrion and transferred to the nucleus. Here, we show that substitution by a duplicated, divergent gene originally encoding the chloroplast or cytosolic ribosomal protein counterpart accounts for two missing mitochondrial genes in diverse angiosperms. The rps13 gene is missing from the mitochondrial genome of many rosids, and a transferred copy of this gene is not evident in the nucleus of Arabidopsis, soybean, or cotton. Instead, these rosids contain a divergent nuclear copy of an rps13 gene of chloroplast origin. The product of this gene from all three rosids was shown to be imported into isolated mitochondria but not into chloroplasts. The rps8 gene is missing from the mitochondrion and nucleus of all angiosperms examined. A divergent copy of the gene encoding its cytosolic counterpart (rps15A) was identified in the nucleus of four angiosperms and one gymnosperm. The product of this gene from Arabidopsis and tomato was imported successfully into mitochondria. We infer that rps13 was lost from the mitochondrial genome and substituted by a duplicated nuclear gene of chloroplast origin early in rosid evolution, whereas rps8 loss and substitution by a gene of nuclear/cytosolic origin occurred much earlier, in a common ancestor of angiosperms and gymnosperms.  相似文献   

14.
15.
The transfer of genetic information from the mitochondrion to the nucleus is thought to be still underway in higher plants. The mitochondrial genome of Arabidopsis thaliana contains only one rps14 pseudogene. In this paper we show that the functional gene encoding mitochondrial ribosomal protein S14 has been translocated to the nucleus. This gene transfer is a recent evolutionary event, which occurred within Cruciferae, probably after the divergence of Arabidopsis and Brassica napus. A 5′ extension of the rps14 reading frame encodes a presequence which, in?vitro, targets the polypeptide to isolated mitochondria and is cleaved off during or after import. No intron was found at the junction of the targeting presequence with the mitochondrially derived sequence, which are directly connected. By contrast, a 90-bp intron, which is removed by splicing to give a mature poly(A)+mRNA of 0.9 kb, is located in the 3′ non-coding region. To our knowledge, this is the first report of an intron in such a position in a functional transferred gene in higher plants, and suggests that exon shuffling may have been involved in the acquisition of elements necessary for expression in the nucleus. Putative roles of this intron in polyadenylation and enhancement of gene expression are discussed.  相似文献   

16.
N Kubo  M Takano  M Nishiguchi  K Kadowaki 《Gene》2001,271(2):193-201
A promiscuous nuclear sequence containing a mitochondrial DNA fragment was isolated from rice. Nucleotide sequence analysis reveals that the cDNA clone #21 carries a mitochondrial sequence homologous to the 3' portion of the rps19 gene followed by the 5' portion of the rps3 gene. The mitochondrial sequence is present in an antisense orientation. Sequence comparison of the #21 cDNA with the original mitochondrial sequence shows 99% similarity, suggesting a recent transfer event. Moreover, evidence for a lack of an RNA editing event and retaining of the group II intron sequence strongly suggests that the sequence was transferred from mitochondrion to the nucleus via DNA rather than RNA as an intermediate. The upstream region to the mitochondria-derived sequence shows homology to part of the vacuolar H(+)-ATPase B subunit (V-ATPase B) gene. Isolation of a functional V-ATPase B cDNA and its comparison with the #21 cDNA reveal a number of nucleotide substitutions resulting in many translational stop codons in the #21 cDNA. This indicates that the #21 cDNA sequence is not functional. Analysis of genomic sequences shows the presence of five intron sequences in the #21 cDNA, whereas the functional V-ATPase B gene has 14 introns. Of these, three exons and their internal two introns are homologous to each other, suggesting a duplication event of V-ATPase B genomic DNA. The results of this investigation strongly suggest that the mitochondrial sequence was integrated in an antisense orientation into the pre-existing V-ATPase B pseudogene that can be transcribed and spliced. This represents a case of unsuccessful gene transfer from mitochondrion to the nucleus.  相似文献   

17.
18.
Organelle (mitochondria and chloroplasts in plants) genomes lost a large number of genes after endosymbiosis occurred. Even after this major gene loss, organelle genomes still lose their own genes, even those that are essential, via gene transfer to the nucleus and gene substitution of either different organelle origin or de novo genes. Gene transfer and substitution events are important processes in the evolution of the eukaryotic cell. Gene loss is an ongoing process in the mitochondria and chloroplasts of higher plants. The gene for ribosomal protein S16 (rps16) is encoded in the chloroplast genome of most higher plants but not in Medicago truncatula and Populus alba. Here, we show that these 2 species have compensated for loss of the rps16 from the chloroplast genome by having a mitochondrial rps16 that can target the chloroplasts as well as mitochondria. Furthermore, in Arabidopsis thaliana, Lycopersicon esculentum, and Oryza sativa, whose chloroplast genomes encode the rps16, we show that the product of the mitochondrial rps16 has dual targeting ability. These results suggest that the dual targeting of RPS16 to the mitochondria and chloroplasts emerged before the divergence of monocots and dicots (140-150 MYA). The gene substitution of the chloroplast rps16 by the nuclear-encoded rps16 in higher plants is the first report about ongoing gene substitution by dual targeting and provides evidence for an intermediate stage in the formation of this heterogeneous organelle.  相似文献   

19.
The transfer of genetic information from the mitochondrion to the nucleus is thought to be still underway in higher plants. The mitochondrial genome of Arabidopsis thaliana contains only one rps14 pseudogene. In this paper we show that the functional gene encoding mitochondrial ribosomal protein S14 has been translocated to the nucleus. This gene transfer is a recent evolutionary event, which occurred within Cruciferae, probably after the divergence of Arabidopsis and Brassica napus. A 5′ extension of the rps14 reading frame encodes a presequence which, in vitro, targets the polypeptide to isolated mitochondria and is cleaved off during or after import. No intron was found at the junction of the targeting presequence with the mitochondrially derived sequence, which are directly connected. By contrast, a 90-bp intron, which is removed by splicing to give a mature poly(A)+mRNA of 0.9 kb, is located in the 3′ non-coding region. To our knowledge, this is the first report of an intron in such a position in a functional transferred gene in higher plants, and suggests that exon shuffling may have been involved in the acquisition of elements necessary for expression in the nucleus. Putative roles of this intron in polyadenylation and enhancement of gene expression are discussed. Received: 11 January 1999 / Accepted: 27 April 1999  相似文献   

20.
We have isolated and analysed a 2 kb region of the mitochondrial genome of Arabidopsis thaliana (Columbia) showing a high level of nucleotide identity with the mitochondrial (mt) rps14 small-subunit ribosomal protein gene from Oenothera berteriana and Vicia faba, as well as with an open reading frame (ORF) located upstream of the nad3 locus in O. berteriana. The rps14 locus is present as a single copy in the A. thaliana mt genome and has a translational stop codon located near the initiation codon, as well as a deletion of one nucleotide that disturbs the coding sequence. The cloning and sequencing of nine amplified mt rps14 cDNAs clearly demonstrated that this gene is transcribed and that the mRNA precursors are edited at three positions, all involving C-to-U conversions. No editing events changing the stop codon and restoring the correct coding sequence were witnessed within the 9 individual cDNA clones. Therefore, we conclude that the single rps14 sequence of the mitochondrial genome from A. thealiana is in fact a pseudogene that is transcribed and edited but not translated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号