首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   15篇
  2017年   1篇
  2016年   1篇
  2014年   2篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2010年   3篇
  2009年   4篇
  2008年   2篇
  2007年   3篇
  2006年   5篇
  2005年   1篇
  2004年   2篇
  2002年   1篇
  2001年   2篇
  2000年   5篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1993年   1篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1987年   1篇
  1985年   2篇
  1983年   2篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1977年   3篇
  1975年   1篇
排序方式: 共有66条查询结果,搜索用时 15 毫秒
1.
A putative polysaccharide adhesin which mediates non-specific attachment of Hyphomonas MHS-3 (MHS-3) to hydrophilic substrata has been isolated and partially characterized. A polysaccharide-enriched portion of the extracellular polymeric substance (EPS(P)) from MHS-3 was separated into four fractions using high performance size exclusion chromatography (HPSEC). Comparison of chromatograms of EPS(P) from MHS-3 and a reduced adhesion strain (MHS-3 rad) suggested that one EPS(P) fraction, which consisted of carbohydrate, served as an adhesin. Adsorption of this fraction to germanium (Ge) was investigated using attenuated total reflection Fourier transform infrared (ATR/FT-IR) spectrometry. Binding curves indicated that the isolated fraction had a relatively high affinity for Ge when ranked against an adhesive protein from Mytilis edulis, mussel adhesive protein (MAP) and an acidic polysaccharide (alginate from Macrocystis pyrifera). Spectral features were used to identify the fraction as a polysaccharide previously reported to adsorb preferentially out of the EPS(P) mixture. Conditioning the Ge substratum with either bovine serum albumin (BSA) or MAP decreased the adsorption of the adhesive polysaccharide significantly. Conditioning Ge with these proteins also decreased adhesion of whole cells.  相似文献   
2.
The structure and function of the centrosomes from Chinese hamster ovary (CHO) cells were investigated by electron microscopy of negatively stained wholemount preparations of cell lysates. Cells were trypsinized from culture dishes, lysed with Triton X-100, sedimented onto ionized, carbon-coated grids, and negatively stained with phosphotungstate. The centrosomes from both interphase and dividing cells consisted of pairs of centrioles, a fibrous pericentriolar material, and a group of virus-like particles which were characteristic of the CHO cells and which served as markers for the pericentriolar material. Interphase centrosomes anchored up to two dozen microtubules when cells were lysed under conditions which preserved native microtubules. When Colcemid-blocked mitotic cells, initially devoid of microtubules, were allowed to recover for 10 min, microtubules formed at the pericentriolar material, but not at the centrioles. When lysates of Colcemid-blocked cells were incubated in vitro with micotubule protein purified from porcine brain tissue, up to 250 microtubules assembled at the centrosomes, similar to the number of microtubules that would normally form at the centrosome during cell division. A few microtubules could also be assembled in vitro onto the ends of isolated centrioles from which the pericentriolar material had been removed, forming characteristic axoneme- like bundles. In addition, microtubules; were assembled onto fragments of densely staining, fibrous material which was tentatively identified as periocentriolar material by its association of CHO can initiate and anchor microtubules both in vivo and in vitro.  相似文献   
3.
The heat inactivation of the obligately psychrophilic marine bacterium Ant-300 was investigated in terms of glucose uptake, the oxidation of glucose to CO2, and permeability control. At 13C, the maximum temperature for growth, and at slightly higher temperatures, CO2 evolution decreased with time during the oxidation of exogenously supplied glucose. The decrease in CO2 evolution appeared to be a result of heat-induced restrictions on glucose uptake. Leakage of intracellular metabolites apparently contributed to the cells decreased ability to take up glucose at elevated temperatures. A consequence of these heat-induced changes seemed to be the acceleration of cell starvation.  相似文献   
4.
啤酒多倍体酵母菌原生质体已成功地与单倍体原生质体进行融合。经细胞壁再生后,稳定的融合重组体被分离出来。这些融合体的基因分析表明,融合体中含有双亲的基因型。孢子形成良好,且每个子囊中含有四个孢子,每个孢子确实是二倍体。这样原生质体融合就提供了一个对啤酒酿造酵母进行遗传分析的方法。但是如果没有一个方便的杂交技术,这个方法将是很困难的。  相似文献   
5.
6.

Background  

Protein expression vectors that utilize the bacteriophage T7 polymerase/promoter system are capable of very high levels of protein production. Frequently, however, expression from these vectors does not reliably achieve optimal levels of protein production. Strategies have been proposed previously that successfully maintain high expression levels, however we sought to determine the cause of induction failure.  相似文献   
7.
Methanobactin (mb) is a novel chromopeptide that appears to function as the extracellular component of a copper acquisition system in methanotrophic bacteria. To examine this potential physiological role, and to distinguish it from iron binding siderophores, the spectral (UV–visible absorption, circular dichroism, fluorescence, and X-ray photoelectron) and thermodynamic properties of metal binding by mb were examined. In the absence of Cu(II) or Cu(I), mb will bind Ag(I), Au(III), Co(II), Cd(II), Fe(III), Hg(II), Mn(II), Ni(II), Pb(II), U(VI), or Zn(II), but not Ba(II), Ca(II), La(II), Mg(II), and Sr(II). The results suggest metals such as Ag(I), Au(III), Hg(II), Pb(II) and possibly U(VI) are bound by a mechanism similar to Cu, whereas the coordination of Co(II), Cd(II), Fe(III), Mn(II), Ni(II) and Zn(II) by mb differs from Cu(II). Consistent with its role as a copper-binding compound or chalkophore, the binding constants of all the metals examined were less than those observed with Cu(II) and copper displaced other metals except Ag(I) and Au(III) bound to mb. However, the binding of different metals by mb suggests that methanotrophic activity also may play a role in either the solubilization or immobilization of many metals in situ.  相似文献   
8.
Methanobactin (mb) is a novel chromopeptide that appears to function as the extracellular component of a copper acquisition system in methanotrophic bacteria. To examine this potential physiological role, and to distinguish it from iron binding siderophores, the spectral (UV–visible absorption, circular dichroism, fluorescence, and X-ray photoelectron) and thermodynamic properties of metal binding by mb were examined. In the absence of Cu(II) or Cu(I), mb will bind Ag(I), Au(III), Co(II), Cd(II), Fe(III), Hg(II), Mn(II), Ni(II), Pb(II), U(VI), or Zn(II), but not Ba(II), Ca(II), La(II), Mg(II), and Sr(II). The results suggest metals such as Ag(I), Au(III), Hg(II), Pb(II) and possibly U(VI) are bound by a mechanism similar to Cu, whereas the coordination of Co(II), Cd(II), Fe(III), Mn(II), Ni(II) and Zn(II) by mb differs from Cu(II). Consistent with its role as a copper-binding compound or chalkophore, the binding constants of all the metals examined were less than those observed with Cu(II) and copper displaced other metals except Ag(I) and Au(III) bound to mb. However, the binding of different metals by mb suggests that methanotrophic activity also may play a role in either the solubilization or immobilization of many metals in situ.  相似文献   
9.

Background

Many musculoskeltal injuries in the workplace have been attributed to the repetitive loading of muscle and soft tissues. It is not disputed that muscular fatigue is a risk factor for musculoskeltal injury, however the disparity between gender with respect to muscular fatigability and rate of recovery is not well understood. Current health and safety guidelines do not account for sex differences in fatiguability and may be predisposing one gender to greater risk. The purpose of this study was to quantify the sex differences in fatigue development and recovery rate of lower and upper body musculature after repeated bouts of sustained isometric contractions.

Methods

Twenty-seven healthy males (n = 12) and females (n = 15) underwent bilateral localized fatigue of either the knee extensors (male: n = 8; female: n = 8), elbow flexors (male: n = 8; female: n = 10), or both muscle groups. The fatigue protocol consisted of ten 30-second sub-maximal isometric contractions. The changes in maximum voluntary contraction (MVC), electrically evoked twitches, and motor unit activation (MUA) were assessed along with the ability to control the sustained contractions (SLP) during the fatigue protocol using a mixed four-factor repeated measures ANOVA (gender × side × muscle × time) design with significance set at p < 0.05.

Results

There was a significant loss of MVC, MUA, and evoked twitch amplitude from pre- to post-fatigue in both the arms and legs. Males had greater relative loss of isometric force, a higher rate of fatigue development, and were less capable of maintaining the fatiguing contractions in the legs when compared to the females.

Conclusion

The nature of the induced fatigue was a combination of central and peripheral fatigue that did not fully recover over a 45-minute period. The results appear to reflect sex differences that are peripheral, and partially support the muscle mass hypothesis for explaining differences in muscular fatigue.
  相似文献   
10.
The iron-reducing bacterium Shewanella oneidensis MR-1 has the capacity to contribute to iron cycling over the long term by respiring on crystalline iron oxides such as hematite when poorly crystalline phases are depleted. The ability of outer membrane cytochromes OmcA and MtrC of MR-1 to bind to and transfer electrons to hematite has led to the suggestion that they function as terminal reductases when this mineral is used as a respiratory substrate. Differences in their redox behavior and hematite-binding properties, however, indicate that they play different roles in the electron transfer reaction. Here, we investigated how these differences in cytochrome behavior with respect to hematite affected biofilm development when the mineral served as terminal electron acceptor (TEA). Upon attachment to hematite, cells of the wild-type (WT) strain as well as those of a ΔomcA mutant but not those of a ΔmtrC mutant replicated and accumulated on the mineral surface. The results indicate that MtrC but not OmcA is required for growth when this mineral serves as TEA. While an OmcA deficiency did not impede cell replication and accumulation on hematite prior to achievement of a maximum surface cell density comparable to that established by WT cells, OmcA was required for efficient electron transfer and cell attachment to hematite once maximum surface cell density was achieved. OmcA may therefore play a role in overcoming barriers to electron transfer and cell attachment to hematite imposed by reductive dissolution of the mineral surface from cell respiration associated with achievement of high surface cell densities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号