首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   2篇
  2018年   1篇
  2014年   1篇
  2013年   2篇
  2007年   1篇
  2005年   1篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1992年   1篇
  1988年   1篇
  1982年   1篇
  1981年   1篇
  1979年   3篇
  1978年   2篇
  1977年   7篇
  1976年   4篇
  1975年   2篇
  1971年   1篇
排序方式: 共有35条查询结果,搜索用时 31 毫秒
1.
2.
3.
TPA regulation of prostaglandin H synthase activity in primary and subcultured dog urothelial cells was investigated. Previous studies have demonstrated an early (0-2 hr) increase in PGE2 synthesis mediated by TPA which is dependent upon release of endogenous arachidonic acid by a phospholipase-mediated pathway. In this study, prostaglandin H synthase activity was assessed directly with microsomes and indirectly after addition of exogenous arachidonic acid at a maximum effective concentration (100 microM) to media. PGE2 synthesis, measured by radioimmunoassay, served as an index of prostaglandin H synthase activity. After a 24-hr incubation with 0.1 microM TPA or 1.0 microM A23187, arachidonic acid elicited significantly more PGE2 synthesis in agonist-treated cells than it did in control cells in primary culture. Microsomes from 24-hr TPA-treated cells exhibited significantly more prostaglandin H synthase activity than did those from control cells. In addition, the PGE2 content of overnight media was approximately 10-fold greater in TPA-treated cells than in control cells. The late (24 hr) response was more sensitive to lower concentrations of TPA than was the earlier (0-2 hr) response. TPA at 0.1 microM was a maximum effective dose for both responses. The 24-hr response was blocked by cycloheximide and staurosporine, inhibitors of protein synthesis and protein kinase C, respectively. Pretreatment of cells with aspirin, an irreversible inhibitor of prostaglandin H synthase, prior to addition of TPA did not prevent the late TPA-mediated increase in PGE2 synthesis. Subcultured cells exhibited both an early and a late TPA response. Only the early response was inhibited by aspirin pretreatment. Results suggest that the late response with TPA is caused by de novo synthesis of prostaglandin H synthase. Thus, primary and subcultured dog urothelial cells possess two distinct mechanisms for regulating signal transduction by arachidonic acid metabolism. This study provides a basis for assessing these mechanisms of signal transduction in urothelial cell lines and transformed cells.  相似文献   
4.
Nitrosation is an important reaction elicited by nitric oxide (NO). To better understand how nitrosation occurs in biological systems, we assessed the effect of myeloperoxidase (MPO), a mediator of inflammation, on nitrosation observed during NO autoxidation. Nitrosation of 2-amino-3-methylimidazo[4,5-f]quinoline (IQ; 10 mum) to 2-nitrosoamino-3-methylimidazo[4,5-f]quinoline (N-NO-IQ) was monitored by HPLC. Using the NO donor spermine NONOate at pH 7.4, MPO potentiated N-NO-IQ formation. The minimum effective quantity of necessary components was 8.5 nm MPO, 0.25 mum H(2)O(2)/min, and 0.024 mum NO/min. Autoxidation was only detected at >/=1.2 mum NO/min. MPO potentiation was not affected by a 40-fold excess flux of H(2)O(2) over NO or less than a 2.4-fold excess flux of NO over H(2)O(2). Potentiation was due to an 8.8-fold increased affinity of MPO-derived nitrosating species for IQ. Autoxidation was inhibited by azide, suggesting involvement of the nitrosonium ion, NO(+). MPO potentiation was inhibited by NADH, but not azide, suggesting oxidative nitrosylation with NO(2)(.) or an NO(2)(.)-like species. MPO nonnitrosative oxidation of IQ with 0.3 mm NO(2)(-) at pH 5.5 was inhibited by azide, but not NADH, demonstrating differences between MPO oxidation of IQ with NO compared with NO(2)(-). Using phorbol ester-stimulated human neutrophils, N-NO-IQ formation was increased with superoxide dismutase and inhibited by catalase and NADH, but not NaN(3). This is consistent with nitrosation potentiation by MPO, not peroxynitrite. Increased N-NO-IQ formation was not detected with polymorphonuclear neutrophils from two unrelated MPO-deficient patients. Results suggest that the highly diffusible stable gas NO could initiate nitrosation at sites of neutrophil infiltration.  相似文献   
5.
Kinetic parameters of mouse thymocyte adenylate cyclase activity were determined. NaF and cholera toxin stimulated adenylate cyclase. Stimulation by either agent did not change the pH or Mg2+ optima relative to control (unstimulated cyclase). The Km value for ATP of adenylate cyclase stimulated by NaF was significantly reduced from control. By contrast, cholera toxin treatment did not change the Km relative to control. Adenylate cyclase, when stimulated by NaF, had an optimum for Mn2+ alone, or Mn2+ in combination with Mg2+, at least twice that of control. In contrast, cyclase activity prepared from cells treated with cholera toxin remained unchanged with regard to these divalent cations when compared to control. Addition of NaF to adenylate cyclase prepared from cells treated with cholera toxin resulted in a significant reduction (30%) in activity suggesting that both NaF and cholera toxin were acting on the same cyclase. NaF inhibition of cholera toxin-stimulated activity was shown to be a direct interaction of fluoride on the stimulated cyclase enzyme. This inhibition appeared to be immediate and independent on pH, Mg2+ or ATP concentrations. Although NaF inhibition was lost when Mn2+ was present in the reaction mixture, the activity expressed by addition of NaF to cyclase prepared from cholera toxin-treated cells was much less than by addition of NaF to control. As observed with cholera toxin stimulation alone, activity expressed by the inhibited enzyme (cholera toxin treated + NaF) exhibited a Km for ATP and an optimum for Mn2+ alone or in combination with Mg2+ similar to control.  相似文献   
6.
Melanoma is the most lethal cutaneous cancer with a highly aggressive and metastatic phenotype. While recent genetic and epigenetic studies have shed new insights into the mechanism of melanoma development, the involvement of regulatory non‐coding RNAs remain unclear. Long non‐coding RNAs (lncRNAs) are a group of endogenous non‐protein‐coding RNAs with the capacity to regulate gene expression at multiple levels. Recent evidences have shown that lncRNAs can regulate many cellular processes, such as cell proliferation, differentiation, migration and invasion. In the melanoma, deregulation of a number of lncRNAs, such as HOTAIR, MALAT1, BANCR, ANRIL, SPRY‐IT1 and SAMMSON, have been reported. Our review summarizes the functional role of lncRNAs in melanoma and their potential clinical application for diagnosis, prognostication and treatment.  相似文献   
7.

Background

The liver is an important organ for its ability to transform xenobiotics, making the liver tissue a prime target for toxic substances. The carotenoid bixin present in annatto is an antioxidant that can protect cells and tissues against the deleterious effects of free radicals. In this study, we evaluated the protective effect of bixin on liver damage induced by carbon tetrachloride (CCl4) in rats.

Results

The animals were divided into four groups with six rats in each group. CCl4 (0.125 mL kg-1 body wt.) was injected intraperitoneally, and bixin (5.0 mg kg-1 body wt.) was given by gavage 7 days before the CCl4 injection. Bixin prevented the liver damage caused by CCl4, as noted by the significant decrease in serum aminotransferases release. Bixin protected the liver against the oxidizing effects of CCl4 by preventing a decrease in glutathione reductase activity and the levels of reduced glutathione and NADPH. The peroxidation of membrane lipids and histopathological damage of the liver was significantly prevented by bixin treatment.

Conclusion

Therefore, we can conclude that the protective effect of bixin against hepatotoxicity induced by CCl4 is related to the antioxidant activity of the compound.  相似文献   
8.
Previous studies have shown that the serum levels of the primary regulators of calcium (Ca) and phosphorus (P) metabolism, 1,25-dihydroxyvitamin D and parathyroid hormone, may change with age. Therefore, the effect of age on the ability of the rat to maintain a positive Ca and P balance was determined. Young (1.5 months) and old (18 months) rats were divided into three groups and fed either a low-Ca, high-P diet; a high-Ca, low-P diet; or a high-Ca, high-P diet. After 14 days, the young rats were in positive Ca and P balance regardless of diet. The old rats on the low-Ca, high-P diet were in negative Ca balance and positive P balance. The old rats on the other diets were in positive Ca and P balance. The negative Ca balance of the old rats was due to decreased intestinal absorption of Ca. Intestinal absorption was assessed by determining the percentage of dietary Ca absorbed in vivo and by measuring the active transport of Ca using the everted gut sac in vitro. Intestinal P absorption showed little change with age, except for a decrease in old rats on the high-Ca, low-P diet. Renal adaptation to dietary Ca and P restriction was similar in both young and old animals. Plasma Ca levels were unchanged with age, but plasma P levels decreased with age regardless of diet. These changes in Ca balance with age may reflect the reported decrease in serum 1,25-dihydroxyvitamin D3 levels and the slight increase in PTH levels with age. The inability of old rats to maintain a positive Ca balance in the face of Ca deprivation is consistent with a general characteristic of the aging process—the decreased ability of an organism to adapt to changes in the external environment.  相似文献   
9.
Cyclic guanosine 3′,5′-monophosphate (cyclic GMP) stimulates nucleic acid synthesis in lymphocytes, and has been implicated as the intracellular effector of the actions of mitogenic agents on these cells. In the present study, we examined the specificity of the mitogenic activity of cyclic GMP and of its 8-bromo (Br) derivatives, and the effects of the T cell mitogens, concanavalin A, phytohemagglutinin, and staphylococcal entertoxin B (SEB) on the cyclic GMP content and guanylate cyclase activity of mouse splenic lymphocytes. Cyclic GMP and guanosine modestly increased the incorporation of [3H]thymidine into DNA by cultured lymphocytes, but were far less effective than their 8-Br-derivatives. However, on a molar basis the mitogenic activity of both 8-Br-guanosine and 8-Br-5′-GMP exceeded that of 8-Br-cyclic GMP, when tested in the presence and absence of serum in the culture media. Combined addition of maximal doses of these nucleotides did not give additive stimulatory effects, suggesting an action on a common subpopulation of cells, and possibly a common mechanism. By contrast, cyclic AMP, 8-Br-cyclic AMP, 8-Br-adenosine, cholera toxin and prostaglandin E1 suppressed both basal [3]thymidine incorporation and stimulation of this parameter by T-cell line mitogens and the guanosine nucleotides. Rapid effects of concanavalin A, phytohemagglutinin, SEB, guanosine, 5′-GMP, 8-Br-guanosine, and 8-Br-5′-GMP on the cyclic GMP content of murine lymphocytes could not be demonstrated. Similarly, concanalin A, phytohemagglutinin and SEB failed to alter guanylate cyclase activity when added directly to cellular homogenates or pre-incubated with intact cels. Conversely, carbamylcholine rapidly increased lymphocyte cyclic GMP but was not mitogenic.These results are consistent with the hypothesis that cyclic GMP and cyclic AMP are antagonistic in their influence on lymphocyte mitogenesis. However, they also demonstrate that related nucleotides are more potent mitogens than cyclic GMP and suggest that activation of murine lymphocytes by concanavalin A, phytohemagglutinin and SEB may not be mediated by rapid increases in cellular cyclic GMP content. Since high concentrations of exogenous cyclic GMP and related nucleotides must be used to influence DNA synthesis, the biologic significance of this effect remains uncertain.  相似文献   
10.
Increasing oxygen from 5 to 95% has previously been shown to increase prostaglandin (PG) production in renal inner medullary slices. The possible role of oxidative phosphorylation in this process was investigated. The oxidative phosphorylation inhibitors, dinitrophenol (DNP), oligomycin, and cyanide were evaluted for their effects on PGE2 production and ATP levels. None of the inhibitors affected PGE2 synthesis, although they lowered ATP levels at the concentrations tested. In contrast, incubation of inner medullary tissue slices with 0% oxygen resulted in decreases both in PGE2 and ATP levels. This suggests that the effect of oxygen on prostaglandin synthesis may be due to substrate limiting effects rather than an effect on oxidative phosphorylation. When 22 mM 2-deoxyglucose was added to the incubation medium or when glucose was omitted, PGE2 levels increased. Sodium fluoride, presumably acting as a glycolytic inhibitor, increased PGE2 levels, with a maximal effect at 10 mM. ATP levels were 37% of control values with 20 mM NaF. This indicates that glucose may inhibit prostaglandin synthesis. These results indicate that oxygen (substrate) availability can limit inner medullary PGE2 production. In view of the low pO2 in the inner medulla, especially during antidiuresis, oxygen can potentially regulate prostaglandin production in this tissue.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号