首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22178篇
  免费   1968篇
  国内免费   2112篇
  2024年   41篇
  2023年   294篇
  2022年   443篇
  2021年   1254篇
  2020年   908篇
  2019年   1051篇
  2018年   1044篇
  2017年   731篇
  2016年   1001篇
  2015年   1447篇
  2014年   1635篇
  2013年   1808篇
  2012年   2069篇
  2011年   1885篇
  2010年   1117篇
  2009年   1057篇
  2008年   1150篇
  2007年   1011篇
  2006年   973篇
  2005年   672篇
  2004年   640篇
  2003年   579篇
  2002年   499篇
  2001年   381篇
  2000年   308篇
  1999年   327篇
  1998年   238篇
  1997年   204篇
  1996年   186篇
  1995年   168篇
  1994年   158篇
  1993年   123篇
  1992年   156篇
  1991年   127篇
  1990年   111篇
  1989年   83篇
  1988年   76篇
  1987年   52篇
  1986年   41篇
  1985年   50篇
  1984年   28篇
  1983年   22篇
  1982年   18篇
  1981年   12篇
  1980年   10篇
  1979年   11篇
  1978年   11篇
  1977年   7篇
  1975年   11篇
  1973年   7篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
1.
2.
3.
4.
5.
Immunotoxins with selective cytotoxicity are frequently used as therapeutic immunosuppressive agents in solid-organ transplantation because of their efficiency and high specificity. In this study, we present a new recombinant immunotoxin termed anti-CTLA-4-scFv–melittin prepared from Escherichia coli aimed at clearing activated T cells at the same time avoiding all-round decline in systematic immunity. This fusion protein is composed of anti-CTLA-4-scFv unit and melittin analog unit with properties of low immunogenicity and selective cytotoxicity to CTLA-4-positive T cells. In preliminary biological activity assays, our results confirmed the feasibility of activated T cell clearance strategy and there were significant differences in cell survival rates between CTLA-4-positive group and control group at all experimental concentrations of the immunotoxin. The selective cytotoxicity, low immunogenicity, and low production cost make it an attractive alternate to traditional immunosuppressants.  相似文献   
6.
Metabolic pathway analysis, one of the most important fields in biochemistry, is pivotal to understanding the maintenance and modulation of the functions of an organism. Good comprehension of metabolic pathways is critical to understanding the mechanisms of some fundamental biological processes. Given a small molecule or an enzyme, how may one identify the metabolic pathways in which it may participate? Answering such a question is a first important step in understanding a metabolic pathway system. By utilizing the information provided by chemical-chemical interactions, chemical-protein interactions, and protein-protein interactions, a novel method was proposed by which to allocate small molecules and enzymes to 11 major classes of metabolic pathways. A benchmark dataset consisting of 3,348 small molecules and 654 enzymes of yeast was constructed to test the method. It was observed that the first order prediction accuracy evaluated by the jackknife test was 79.56% in identifying the small molecules and enzymes in a benchmark dataset. Our method may become a useful vehicle in predicting the metabolic pathways of small molecules and enzymes, providing a basis for some further analysis of the pathway systems.  相似文献   
7.
Ying Yuan  Guosheng Yin 《Biometrics》2010,66(1):105-114
Summary .  We study quantile regression (QR) for longitudinal measurements with nonignorable intermittent missing data and dropout. Compared to conventional mean regression, quantile regression can characterize the entire conditional distribution of the outcome variable, and is more robust to outliers and misspecification of the error distribution. We account for the within-subject correlation by introducing a   ℓ2   penalty in the usual QR check function to shrink the subject-specific intercepts and slopes toward the common population values. The informative missing data are assumed to be related to the longitudinal outcome process through the shared latent random effects. We assess the performance of the proposed method using simulation studies, and illustrate it with data from a pediatric AIDS clinical trial.  相似文献   
8.
A cDNA clone encoding the N-terminal sequence of the murine integrin beta 7 subunit, a novel member of the leukocyte cell adhesion molecule subset (Leu-CAM), has been isolated. An N-terminal region of 13 contiguous amino acids deduced from the cDNA shows complete identity with the N-terminus of the 120 kDa subunit of the M290 antigen, a surface molecule found highly expressed on mouse intestinal intraepithelial lymphocytes (IEL). This unexpected result focuses two previously unconnected areas of research and suggests that integrins may have a special role to play in the defence of the gut mucosa.  相似文献   
9.
As a key factor for cell pluripotent and self-renewing phenotypes, SOX2 has attracted scientists’ attention gradually in recent years. However, its exact effects in dental pulp stem cells (DPSCs) are still unclear. In this study, we mainly investigated whether SOX2 could affect some biological functions of DPSCs. DPSCs were isolated from the dental pulp of human impacted third molar. SOX2 overexpressing DPSCs (DPSCs-SOX2) were established through retroviral infection. The effect of SOX2 on cell proliferation, migration and adhesion ability was evaluated with CCK-8, trans-well system and fibronectin-induced cell attachment experiment respectively. Whole genome expression of DPSCs-SOX2 was analyzed with RNA microarray. Furthermore, a rescue experiment was performed with SOX2-siRNA in DPSC-SOX2 to confirm the effect of SOX2 overexpression in DPSCs. We found that SOX2 overexpression could result in the enhancement of cell proliferation, migration, and adhesion in DPSCs obviously. RNA microarray analysis indicated that some key genes in the signal pathways associated with cell cycle, migration and adhesion were upregulated in different degree, and the results were further confirmed with qPCR and western-blot. Finally, DPSC-SOX2 transfected with SOX2-siRNA showed a decrease of cell proliferation, migration and adhesion ability, which further confirmed the biological effect of SOX2 in human DPSCs. This study indicated that SOX2 could improve the cell proliferation, migration and adhesion ability of DPSCs through regulating gene expression about cell cycle, migration and adhesion, and provided a novel strategy to develop seed cells with strong proliferation, migration and adhesion ability for tissue engineering.  相似文献   
10.
A low-protein diet supplemented with ketoacids maintains nutritional status in patients with diabetic nephropathy. The activation of autophagy has been shown in the skeletal muscle of diabetic and uremic rats. This study aimed to determine whether a low-protein diet supplemented with ketoacids improves muscle atrophy and decreases the increased autophagy observed in rats with type 2 diabetic nephropathy. In this study, 24-week-old Goto-Kakizaki male rats were randomly divided into groups that received either a normal protein diet (NPD group), a low-protein diet (LPD group) or a low-protein diet supplemented with ketoacids (LPD+KA group) for 24 weeks. Age- and weight-matched Wistar rats served as control animals and received a normal protein diet (control group). We found that protein restriction attenuated proteinuria and decreased blood urea nitrogen and serum creatinine levels. Compared with the NPD and LPD groups, the LPD+KA group showed a delay in body weight loss, an attenuation in soleus muscle mass loss and a decrease of the mean cross-sectional area of soleus muscle fibers. The mRNA and protein expression of autophagy-related genes, such as Beclin-1, LC3B, Bnip3, p62 and Cathepsin L, were increased in the soleus muscle of GK rats fed with NPD compared to Wistar rats. Importantly, LPD resulted in a slight reduction in the expression of autophagy-related genes; however, these differences were not statistically significant. In addition, LPD+KA abolished the upregulation of autophagy-related gene expression. Furthermore, the activation of autophagy in the NPD and LPD groups was confirmed by the appearance of autophagosomes or autolysosomes using electron microscopy, when compared with the Control and LPD+KA groups. Our results showed that LPD+KA abolished the activation of autophagy in skeletal muscle and decreased muscle loss in rats with type 2 diabetic nephropathy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号