首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   0篇
  国内免费   6篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  2014年   2篇
  2013年   5篇
  2011年   2篇
  2010年   15篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   5篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1991年   1篇
排序方式: 共有42条查询结果,搜索用时 453 毫秒
1.
Chang  Hanna  An  Jiae  Roh  Yujin  Son  Yowhan 《Plant Ecology》2020,221(7):515-527
Plant Ecology - This study was conducted to investigate physiological responses and mortality of P. koraiensis seedlings under warming and drought treatments. In May 2016, 90 P. koraiensis...  相似文献   
2.
A carbon flux model, the vegetation integrated simulator for trace gases, was employed to estimate the carbon budgets of vegetation ecosystems in South Korea. The geographic information system was used to prepare the input variables for the model, such as climate, soil, and land-cover data, from reliable national inventories. Model simulation results indicated that the annual average gross primary production, net primary production, and soil respiration (SR) for 10 years were 91.89, 40.16, and 62.91 Tg C year?1, respectively. The model also estimated a net ecosystem production with a value of 3.51 Tg C year?1 between 1999 and 2008. Such results indicate that the vegetation ecosystems of South Korea offset 3.3 % of anthropogenic emissions as a net carbon sink. Latitudinal and topographical gradients over the total simulation area were found for all estimates. In addition, the estimates varied between seasons and years, especially in estimates for biomass growth and carbon uptake, because of variations in the weather conditions. Finally, model validation was conducted using measured soil efflux and flux measurement data from the Gwangneung experimental forest (GEF). The estimated SR accounted for 81.6 % of the observed SR at the GEF site (P < 0.005). Further, the model accounted well for the observed phase and amplitude of changes in the summer and autumn seasons.  相似文献   
3.
Aims Assessment of factors regulating root decomposition is needed to understand carbon and nutrient cycling in forest ecosystems. The objective of this study is to examine the effects of soil depth and root diameter on root decomposition and to analyze the relationship of root decomposition with factors such as soil environmental conditions and initial litter quality.  相似文献   
4.
The nitrogenase activity, root nodule biomass, and rates of nitrogen (N) fixation were measured in 25-year-old pure north- and south-facing Robinia pseudoacacia stands in an urban forest of Seoul (Kkachisan Mountain) in central Korea. The nitrogenase activity was estimated using an acetylene reduction (AR) assay, which showed an increasing trend during the early growing season, with sustained high rates from June through to September with a decrease thereafter. July had the highest nitrogenase activity rate (micromoles C2H4 per gram dry nodule per hour), averaging 95.8 and 115.1 for the north- and south-facing stands, respectively. The maximum root nodule biomass (kilograms per hectare) was 45.7 and 9.1 for the north- and south-facing stands in July, respectively. The AR rate appeared to be strongly correlated to the soil temperature (r 2 = 0.68, P < 0.001) and soil pH (r 2 = 0.59, P < 0.001) while root nodule biomass was correlated to the soil temperature (r 2 = 0.36, P < 0.01) and water content (r 2 = 0.35, P < 0.05). The soil temperature showed clear differences between seasons, while there was a significant difference in soil pH, organic matter, total N concentrations, and available phosphorus between the north- and south-facing stands. The N2 fixation rates during the growing season varied from 0.1 to 37.5 kg N ha−1 month−1 depending on the sampling location and time. The annual N2 fixation rate (kg N per hectare per year) was 112.3 and 23.2 for the north- and south-facing stands, respectively. The differences in N2 fixation rate between the two stands were due mainly to the differences in total nodule biomass.  相似文献   
5.
To investigate annual variation in soil respiration (R S) and its components [autotrophic (R A) and heterotrophic (R H)] in relation to seasonal changes in soil temperature (ST) and soil water content (SWC) in an Abies holophylla stand (stand A) and a Quercus-dominated stand (stand Q), we set up trenched plots and measured R S, ST and SWC for 2 years. The mean annual rate of R S was 436 mg CO2 m−2 h−1, ranging from 76 to 1,170 mg CO2 m−2 h−1, in stand A and 376 mg CO2 m−2 h−1, ranging from 82 to 1,133 mg CO2 m−2 h−1, in stand Q. A significant relationship between R S and its components and ST was observed over the 2 years in both stands, whereas a significant correlation between R A and SWC was detected only in stand Q. On average over the 2 years, R A accounted for approximately 34% (range 17–67%) and 31% (15–82%) of the variation in R S in stands A and Q, respectively. Our results suggested that vegetation type did not significantly affect the annual mean contributions of R A or R H, but did affect the pattern of seasonal change in the contribution of R A to R S.  相似文献   
6.
We investigated the influence of stand density [938 tree ha−1 for high stand density (HD), 600 tree ha−1 for medium stand density (MD), and 375 tree ha−1 for low stand density (LD)] on soil CO2 efflux (R S) in a 70-year-old natural Pinus densiflora S. et Z. forest in central Korea. Concurrent with R S measurements, we measured litterfall, total belowground carbon allocation (TBCA), leaf area index (LAI), soil temperature (ST), soil water content (SWC), and soil nitrogen (N) concentration over a 2-year period. The R S (t C ha−1 year−1) and leaf litterfall (t C ha−1 year−1) values varied with stand density: 6.21 and 2.03 for HD, 7.45 and 2.37 for MD, and 6.96 and 2.23 for LD, respectively. In addition, R S was correlated with ST (R 2 = 0.77–0.80, P < 0.001) and SWC (R 2 = 0.31–0.35, P < 0.001). It appeared that stand density influenced R S via changes in leaf litterfall, LAI and SWC. Leaf litterfall (R 2 = 0.71), TBCA (R 2 = 0.64–0.87), and total soil N contents in 2007 (R 2 = 0.94) explained a significant amount of the variance in R S (P < 0.01). The current study showed that stand density is one of the key factors influencing R S due to the changing biophysical and environmental factors in P. densiflora.  相似文献   
7.
The carbon (C) and nitrogen (N) status in forest ecosystems can change upon establishment of plantations because different tree species have different nutrient cycling mechanisms. This study was carried out to evaluate C and N status of litterfall, litter decomposition and soil in three adjacent plantations consisting of one deciduous (larch: Larix leptolepis) and two evergreen (red pine: Pinus densiflora; rigitaeda pine: P. rigida × P. taeda) species planted in the same year (1963). Both the pine plantations showed comparatively higher C input from needle litter but significantly lower N concentration and input than the larch plantation (P < 0.05). During the decomposition process, the deciduous larch needle litter showed low C concentration and C remaining in soil, but high N concentration and N remaining in soil compared to the two evergreen pine needle litters. However, the soil C and N concentration and their content at a soil depth of 0–10 cm were not affected significantly (P > 0.05) by the plantation type. These results demonstrate the existence of considerable variation in C and N status resulting from needle litter input and litter decomposition in these three plantations grown at sites with similar environmental conditions.  相似文献   
8.
This study examined the biomass and carbon pools of the main ecosystem components in an age sequence of five Korean pine plantation forest stands in central Korea. The C contents in the tree and ground vegetation biomass, coarse woody debris, forest floor, and mineral soil were estimated by analyzing the C concentration of each component. The aboveground and total tree biomass increased with increasing stand age. The highest C concentration across this chronosequence was found in the tree branch while the lowest C concentration was found in the ground vegetation. The observed C contents for tree components, ground vegetation, and coarse woody debris were generally lower than the predicted C contents estimated from a biomass C factor of 0.5. Forest floor C content was age-independent. Total mineral soil C content appeared to decline initially after establishing Korean pine plantations and recover by the stand age of 35 years. Although aboveground tree biomass C content showed considerable accumulation with increasing age, the relative contribution of below ground C to total ecosystem C content varied substantially. These results suggest that successional development as temporal factor has a key role in estimating the C storage in Korean pine plantation forests.  相似文献   
9.
This study was conducted to examine the influences of soil-moisture conditions on soil nitrogen (N) dynamics, including in situ soil N mineralization, N availability, and denitrification in a pure Alnus japonica forest located in Seoul, central Korea. The soil N mineralization, N availability, and denitrification were determined using the buried bag incubation method, ion exchange resin bag method, and acetylene block method, respectively. The annual net N mineralization rate (kg N ha−1 year−1) and annual N availability (mg N bag−1) were 40.26 and 80.65 in the relatively dry site, −5.43 and 45.39 in the moist site, and 7.09 and 39.17 in the wet site, respectively. The annual net N mineralization rate and annual N availability in the dry site were significantly higher than those in the moist and wet sites, whereas there was no significant difference between the moist and wet sites. The annual mean denitrification rate (kg N ha−1 year−1) in the dry, moist, and wet sites was 2.37, 2.76, and 1.59, respectively. However, there was no significant difference among sites due to the high spatial and temporal variations. Our results indicate that soil-moisture condition influenced the in situ N mineralization and resin bag N availability in an A. japonica forest, and treatments of proper drainage for poorly drained sites would increase soil N mineralization and N availability and consequently be useful to conserve and manage the A. japonica forest.  相似文献   
10.
This study verified regional differences in the stem form of Pinus densiflora Sieb. et Zucc. (red pine) and identified the relationship between stem form and climatic factors in the central region of the Korean peninsula. Regional differences in stem form index at tree base (butt) and top stem section were found. Compared to the stem form in the eastern uplands, the stem form in the western lowlands could be characterized by a more conical butt section and more cylindrical middle and upper section. Through geostatistical analysis of kriging and spatial regression, several climatic factors proved to exert a meaningful influence on stem taper form. On the stem form at the butt section, the precipitation during the late growing season exerts statistically significant effects. High precipitation during the growing season in the western lowland and coastal region causes the stem form at the butt section to be more tapered. On the stem form at the middle and upper section, temperature and precipitation during the growing season, and wind during the late growing season have statistically meaningful influences. High temperature, precipitation, and wind during the growing season in the western lowland and coastal region jointly influence the stem form at the middle and upper sections which result in more cylindrical profiles. This study can be considered an initial investigation into the factors controlling stem form variability in the central region of the Korean peninsula. The results can be used to develop more accurate regional stem taper models needed for reasonable management of red pine stands in different regions.
Woo-Kyun LeeEmail: Phone: +82-2-32903016Fax: 82-2-9530737
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号