首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The influences of thinning (50% of standing density) and liming (Ca+Mg, 2 Mg ha−1) on soil chemical properties were investigated for 2 years (2001, 2002) in 40-year-old pitch pine (Pinus rigida Mill.) and 44-year-old Japanese larch (Larix leptolepis Gord.) plantations established on similar soils. In general, soil properties varied significantly among plantations and treatments. For both plantations, thinning significantly increased soil organic C (SOC) concentrations whereas there were no significant changes in soil pH and Ca and Mg concentrations. In addition, thinning increased total soil N and Na concentrations for the pitch pine plantation and available P concentration for the Japanese larch plantation in the second year after the treatment. Liming did not affect soil chemical characteristics for the pitch pine plantation except for Na concentration. However, for the Japanese larch plantation, liming significantly increased soil pH and K, Ca and Mg concentrations and decreased SOC and total soil N concentrations. For both plantations, soil Al concentration did not change after thinning and liming and decreased exponentially with increased pH values. The increases in SOC and total soil N concentrations after thinning were possibly due to increases in decomposition of organic matter and root death. Although differences were not statistically significant, soil available P concentration tended to increase at early stages of liming for both plantations. These results suggested that thinning and liming seemed to regulate soil chemical properties for pitch pine and Japanese larch plantations established on similar soils.  相似文献   

2.
This study was carried out to compare the ecological function of exotic pine (Pinus radiata—Pr) and native pine (Pinus tabulaeformis—Pt) in terms of litter decomposition and its related N dynamics and to evaluate if the presence of broad-leaved tree species (Cercidiphyllum japonicum—Cj) or shrub species (Ostryopsis davidiana—Od) litter would promote the decomposition of pine needles and N cycling. Mass remaining, N release of the four single-species litters and mixed-species (Pt + Cj; Pr + Cj; Pt + Od; Pr + Od) litters and soil N dynamics were measured at microcosm scale during an 84-day incubation period. The Pt and Pr litter, with poorer substrate quality, indicated slower decomposition rates than did the Cj and Od litter. Due to their high C/N ratios, the N mass of Pt and Pr litter continuously increased during the early stage of decomposition, which showed that Pt and Pr litter immobilized exogenous N by microbes. No significant differences of soil inorganic, dissolved organic and microbial biomass N were found between the Pt and Pr microcosm at each sampling. The results showed that the exotic Pr performed similar ecological function to the native Pt in terms of litter decomposition and N dynamics during the early stage. The presence of Cj or Od litter increased the decomposition rates of pine needle litter and also dramatically increased soil N availability. So it is feasible for plantation managers to consider the use of Cj as an ameliorative species or to retain Od in pine plantations to promote the decomposition of pine litter and increase nutrient circulation. The results also suggested that different species litters induced different soil dissolved organic nitrogen (DON). As a major soluble N pool in soil, DON developed a different changing tendency over time compared with inorganic N, and should be included into soil N dynamic under the condition of our study.  相似文献   

3.
黄土丘陵区刺槐与油松人工林生态系统生态化学计量特征   总被引:10,自引:0,他引:10  
章广琦  张萍  陈云明  彭守璋  曹扬 《生态学报》2018,38(4):1328-1336
为阐明不同人工林生态系统间生态化学计量特征的差异,采用野外采样与室内分析相结合的方式分析了陕北黄土丘陵区落叶阔叶树种刺槐和常绿针叶树种油松人工林乔木、灌草、枯落物和土壤(土层深度0—100cm)C、N、P化学计量特征。结果表明:1)刺槐乔木各器官(叶、枝、干、皮、根)C含量显著低于油松,但N和P含量显著高于油松。因此,油松的C∶N和C∶P显著大于刺槐,而N∶P小于刺槐。2)刺槐林下枯落物N和P含量显著高于油松,但C含量显著小于油松。此外,油松林下枯落物C∶N(70.21)大于刺槐林下枯落物C∶N(19.71),说明油松林下枯落物分解较慢,有利于养分的存储。3)刺槐和油松人工林土壤C、N含量均随土壤深度增加而减少,P含量则基本保持不变。刺槐人工林土壤中C含量低于油松,N、P含量在两者之间无显著差异。4)刺槐人工林内乔灌草叶、枯落物与土壤C、N、P及其计量比的相关性多集中在10—20、20—30cm土层,而油松林中各组分与土壤营养元素的相关性相对较小,其中20—30cm土层中无显著相关性,说明相比刺槐人工林而言,油松人工林内土壤层N、P供应量对植物叶片N、P含量影响不显著。本研究为深入了解黄土丘陵区生态系统养分耦合循环机制奠定了基础,同时也为黄土丘陵区的植被恢复工作提供了一定的指导意义。  相似文献   

4.
This study aims to evaluate the impacts of changes in litter quantity under simulated N deposition on litter decomposition, CO2 release, and soil C loss potential in a larch plantation in Northeast China. We conducted a laboratory incubation experiment using soil and litter collected from control and N addition (100 kg ha−1 year−1 for 10 years) plots. Different quantities of litter (0, 1, 2 and 4 g) were placed on 150 g soils collected from the same plots and incubated in microcosms for 270 days. We found that increased litter input strongly stimulated litter decomposition rate and CO2 release in both control and N fertilization microcosms, though reduced soil microbial biomass C (MBC) and dissolved inorganic N (DIN) concentration. Carbon input (C loss from litter decomposition) and carbon output (the cumulative C loss due to respiration) elevated with increasing litter input in both control and N fertilization microcosms. However, soil C loss potentials (C output–C input) reduced by 62% in control microcosms and 111% in N fertilization microcosms when litter addition increased from 1 g to 4 g, respectively. Our results indicated that increased litter input had a potential to suppress soil organic C loss especially for N addition plots.  相似文献   

5.
探讨人工林发育过程中土壤温室气体排放及其机制,可为森林温室气体通量估算提供理论依据。采用室内培养方法研究了黑龙江省帽儿山地区不同林龄(15、30和50年生)红松(Pinus koraiensis)和落叶松(Larix gmelinii)人工林土壤温室气体排放/吸收速率及其调控因素。结果表明:30年生红松和落叶松人工林土壤CO2排放速率(红松:(1724.18±98.57)μg C·kg-1·h-1;落叶松:(1306.37±142.27)μg C·kg-1·h-1)和CH4吸收速率(红松:(5.12±0.68)μg C·kg-1·h-1;落叶松:(1.91±0.85)μg C·kg-1·h-1)显著高于15和50年生(P<0.05)。30年生红松人工林土壤N2O排放速率显著高于15和50年生(P<0.05),而落叶松人工林土壤N2O排放速率随林龄增加变化不显著。红松和落叶松人工林土壤N2O排放速率最大值分别为(0.139±0.016)和(0.137±0.056)μg N·kg-1·h-1。红松人工林土壤CO2排放速率均高于同龄落叶松人工林,15和30年生达到显著水平(P<0.05)。红松人工林土壤CH4吸收速率均显著高于同龄落叶松人工林(P<0.05)。红松人工林土壤N2O排放速率与同龄落叶松人工林土壤均无显著差异。混合线性模型分析显示,影响红松和落叶松人工林发育过程中土壤CO2排放速率的主要因素是土壤全碳含量和微生物生物量氮,其中微生物生物量氮受树种和林龄的影响。CH4吸收速率受到微生物生物量碳、溶解性有机碳和溶解性有机氮含量影响,其中微生物生物量碳受树种和林龄调控。N2O排放速率受溶解性有机氮、铵态氮和硝态氮影响,其中溶解性有机氮受林龄影响。综上所述,树种和林龄差异造成的土壤理化性质和微生物生物量碳氮的异质性可在一定程度上解释土壤温室气体排放/吸收速率的差异。  相似文献   

6.
以科尔沁沙地东南缘沙质草地和不同年龄樟子松(Pinus sylvestris var. mongolica)人工林(15、24和30年生)为对象,研究草地造林对土壤pH,土壤C、N、P含量,无机N(铵态氮、硝态氮)含量,C、N矿化速率,微生物生物量C含量以及土壤酶(脲酶、转化酶和过氧化氢酶)活性的影响.结果表明:草地造林初期,林地土壤C、N、P含量逐渐降低,随着林龄增加而逐渐恢复;与草地相比,24年生樟子松人工林土壤C、N、P含量最低,分别下降29%、34%和33%,而30年生樟子松人工林土壤C和N含量与草地差异不显著.草地造林能够影响土壤无机N存在形式,使土壤铵态氮含量逐渐增加,硝态氮含量下降.草地造林对土壤潜在N矿化速率和硝化速率影响不显著,但能够改变土壤C矿化速率,不同林龄樟子松人工林土壤C矿化速率依次为:24年生>30年生>草地>15年生.草地造林初期,土壤微生物生物量C含量和土壤转化酶活性明显降低,随着林龄的增加又逐渐增加;草地造林对土壤脲酶活性影响不显著,而使土壤过氧化氢酶活性逐渐增加.科尔沁沙地草地造林能够显著改变土壤化学和生物学性状,且随着林龄的变化而有所差异.  相似文献   

7.
Aboveground nitrogen (N) and phosphorus (P) requirement, retranslocation and use efficiency were determined for 28-year-old red oak (Quercus rubra L.), European larch (Larix decidua Miller), white pine (Pinus strobes L.), red pine (Pinus resinosa Ait.) and Norway spruce (Picea abies (L) Karst.) plantations on a similar soil in southwestern Wisconsin. Annual aboveground N and P requirements (kg/ha/yr) totaled 126 and 13 for red oak, 86 and 9 for European larch, 80 and 9 for white pine, 38 and 6 for red pine, and 81 and 13 for Norway spruce, respectively. Nitrogen and P retranslocation from current foliage ranged from 81 and 72%, respectively, for European larch, whereas red pine retranslocated the smallest amount of N (13%) and Norway spruce retranslocated the smallest amount of P (18%). In three evergreen species, uptake accounted for 72 to 74% of annual N requirement whereas for two deciduous species retranslocation accounted for 76 to 77% of the annual N requirement. Nitrogen and P use (ANPP/uptake) was more efficient in deciduous species than evergreen species. The results from this common garden experiment demonstrate that differences in N and P cycling among species may result from intrinsic characteristics (e.g. leaf longevity) rather than environmental conditions.  相似文献   

8.
Fungi, especially basidiomycetous litter decomposers, are pivotal to the turnover of soil organic matter in forest soils. Many litter decomposing fungi have a well-developed capacity to translocate resources in their mycelia, a feature that may significantly affect carbon (C) and nitrogen (N) dynamics in decomposing litter. In an eight-month long laboratory study we investigated how the external availability of N affected the decomposition of Scots pine needles, fungal biomass production, N retention and N-mineralization by two litter decomposing fungi – Marasmius androsaceus and Mycena epipterygia. Glycine additions had a general, positive effect on fungal biomass production and increased accumulated needle mass loss after 8 months, suggesting that low N availability may limit fungal growth and activity in decomposing pine litter. Changes in the needle N pool reflected the dynamics of the fungal mycelium. During late decomposition stages, redistribution of mycelium and N out from the decomposed needles was observed for M. epipterygia, suggesting autophagous self degradation.  相似文献   

9.
广西大青山杉木人工林碳氮磷生态化学计量特征   总被引:8,自引:5,他引:3  
为研究杉木人工林生态系统植物、凋落物和土壤碳(C)、氮(N)、磷(P)生态化学计量特征的差异和相互关系,以广西大青山杉木密度试验林为研究对象,测定了5种初植密度下杉木人工林针叶、草本、凋落物和土壤的C、N、P含量及其比值。结果表明:针叶的C、N、P含量最高,凋落物次之,土壤最低。C∶N、C∶P表现为凋落物针叶草本土壤,N∶P表现为凋落物草本针叶土壤。其中针叶的N∶P均值为16.69,凋落物C∶N显著高于N发生释放的C∶N的临界值(30)。杉木人工林针叶和草本N、C∶N呈显著负相关关系,针叶和土壤的C∶N、N∶P,草本和凋落物P含量、C∶P均呈显著正相关关系,体现了杉木生态系统内的C、N、P在针叶、草本、凋落物和土壤之间相互转化和循环。南亚热带杉木人工林植物生长受P限制,凋落物分解慢,土壤有机质的矿化作用慢,养分循环能力低,因此在人工林抚育管理中,应保护林下植被,适当施肥,提高土壤肥力,维持杉木林长期生产力。  相似文献   

10.
降水格局是影响陆地生态系统结构和过程的重要环境要素,尤其对于干旱/半干旱地区,降水变化是植物生长驱动的关键生态因子。目前,针对降水变化对陆地生态系统C、N、P等元素生物地球化学循环过程影响开展了大量研究。然而,关于沙地樟子松重要引种地科尔沁沙地自然降水梯度下沙地樟子松人工林土壤、植物生态化学计量特征的研究未见报道。因此,本研究以樟子松原产地红花尔基和引种地科尔沁沙地自然降水梯度下4个典型沙地樟子松人工林为对象,研究樟子松引种地降水变化对土壤(0—10,10—20 cm和20—40 cm)和植物(1年和2年生叶)生态化学计量特征的影响。研究结果发现:(1)与红花尔基原产地樟子松人工林相比,科尔沁沙地引种的樟子松人工林土壤C、N、P元素含量显著降低;(2)科尔沁沙地自西向东,随降水量增加,沙地樟子松人工林土壤C、N、P含量以及C∶P和N∶P表现为逐渐增加趋势,而土壤C∶N呈减少趋势;(3)随着降水量增加,樟子松叶C含量呈下降趋势,叶N含量和N∶P比值呈增加趋势,植物叶P含量无一致性规律;(4)樟子松叶片P含量与土壤C、N、P含量呈极显著正相关关系,而叶片C和N含量与土壤C、N、P含量无显著相关性。研究表明,沙地樟子松引种地科尔沁沙地土壤C、N、P养分比较缺乏,且随着降水增加土壤N养分限制降低,而土壤P养分限制增加。本研究从生态化学计量特征角度,为今后开展科尔沁沙地不同降水梯度条件下引种樟子松人工林提供理论依据。  相似文献   

11.
The hygroscopic properties of the litter of coniferous (larch and pine) and deciduous (aspen and birch) stands were studied in terms of isotherms of water-vapor sorption and with use of thermal analysis methods (TG, DSC). It was found that most of the monolayer capacity belongs to subhorizons OL and OF of the larch and pine forest litters. The larch plantation litter has the highest hydrophilicity. DSC results show that the water is most strongly associated with the litter substance in subhorizon OL in coniferous plantations and OH in deciduous ones. The moisture supply in the litter of coniferous stands is greater than in deciduous ones.  相似文献   

12.

Background and aims

Freeze events can strongly influence many ecosystem processes. However, the effects of freeze events on litter production, litter quality, and decomposition are rarely documented.

Methods

In this study, litter fall was measured monthly for 2 years. Two litter decomposition experiments were also performed using freeze-damaged litter and non-damaged litter in a loblolly pine forest.

Results

The freeze event in November 2009 caused a pronounced pulse of needle litter fall. The freeze-damaged needle litter was shown to have higher N concentration and lower C/N ratio compared with the normal falling needle litter. This finding indicates that freeze damage significantly increased needle quality because of incomplete nutrient resorption. The decomposition of freeze-damaged needle litter was faster than that of normal falling yellow needle litter and slower than that of hand-picked green needle litter. The decomposition rate constant (k) was negatively correlated with the C/N ratio in the needle litter. Our results also showed that the different climatic conditions influence patterns of litter decomposition.

Conclusions

This study suggests that freeze events significantly alter litter quantity and quality, thus affecting litter decomposition rates in a loblolly pine forest in central China.  相似文献   

13.
Abstract Leaf litter decomposition experiments were conducted on two deciduous (Nothofagus obliqua (roble)) and Nothofagus pumilio (lenga)) and one evergreen (Nothofagus dombeyi) Nothofagus (Nothofagaceae) species from a single Chilean forest in order to understand how congeneric trees with differing leaf lifespans impact the soil in which they grow. Single‐species litter samples were decomposed in a mixed hardwood forest in Ohio and in a deciduous‐evergreen Nothofagus forest in Chile. In the Ohio forest, the two deciduous species’ litters decomposed at k ≈ 1.00 per year and the evergreen at k ≈ 0.75 per year. In Chile k ranged from k ≈ 0.06 (N. obliqua) to k ≈ 0.23 (N. pumilio) per year. In both experiments, N and P were released faster from the deciduous litters than from evergreen litter. In Ohio, evergreen litter immobilized more N and P for a longer time period than did deciduous litter. As N. dombeyi stands tend to have lower available soil N and P in this particular mixed Nothofagus forest, the increased time of N and P immobilization by N. dombeyi litter suggests a feedback role of the tree itself in perpetuating low N and P soil conditions.  相似文献   

14.
姜沛沛  曹扬  陈云明  王芳 《生态学报》2016,36(19):6188-6197
在陕西省北部延安市境内子午岭林区,采用时空互代的方法选取9、23、33、47年生油松(Pinus tabuliformis)人工林为研究对象,比较油松不同器官(叶、枝、干、根)、凋落物及土壤C、N、P含量及其比值的差异,探讨它们随林龄的变化及其相互间的关系,以期为油松人工林的生产、改善和林木生长环境的调节提供参考。结果表明:除根中C含量在林龄间差异不显著外,其它器官C、N、P含量及其比值在林龄间均差异显著且随林龄增加变化趋势不尽相同。9、23、33、47年生油松林C、N、P含量及N∶P比值均在叶中最高;C∶N比值均在干中最高,根中次之;C∶P比值均在干中最高,其它器官大小次序不一。除33年生油松林叶中N∶P比值大于14外,其它各器官各林龄N∶P比值均小于14,且N∶P比值随林龄先增加后减少,故可判断油松在该区域受N限制较为严重,且随林龄的增加受N限制的情况有所缓解。不同林龄土壤和凋落物C、N、P含量及其比值差异显著,且后者均大于前者。土壤与凋落物C、P含量及C∶N、C∶P、N∶P比值随林龄增加变化趋势完全一致,表明土壤与凋落物之间有着密切的关系。叶片与凋落物N、P含量及C∶N、C∶P、N∶P比值之间显著相关,表明凋落物的养分承自植物叶片,二者之间关系紧密;植物和土壤的C、N、P含量之间均不存在显著相关性,说明土壤C、N、P供应量对乔木叶片C、N、P含量影响不大。  相似文献   

15.
The effects of simulated N deposition on changes in mass, C, N and P of decomposing pine (Pinus massoniana) needles in a disturbed and a rehabilitated forest in tropical China were studied during a 24-month period. The objective of the study was to test the hypothesis that litter decomposition in a disturbed forest is more sensitive to N deposition rate than litter decomposition in a rehabilitated forest due to the relatively low nutrient status in the former as a result of constant human disturbance (harvesting understory and litter). The litterbag method and N treatments (control, no N addition; low-N, 5 g N m−2 year−1; medium-N, 10 g N m−2 year−1) were employed to evaluate decomposition. The results revealed that N addition increased (positive effect) mass loss rate and C release rate but suppressed (negative effect) the release rate of N and P from decomposing needles in both disturbed and rehabilitated forests. The enhanced needle decomposition rate by N addition was significantly related to the reduction in the C/N ratio in decomposing needles. However, N availability is not the sole factor limiting needle decomposition in both disturbed and rehabilitated forests. The positive effect was more sensitive to the N addition rate in the rehabilitated forest than in the disturbed forest, however the reverse was true for the negative effect. These results suggest that nutrient status could be one of the important factors in controlling the response of litter decomposition and its nutrient release to elevated N deposition in reforested ecosystems in the study region.  相似文献   

16.
以贵州8年、16年、28年生杉木人工林为研究对象,分析植物-凋落叶-土壤的C、N、P化学计量特征及其内在联系,探讨林龄对杉木人工林生态化学计量的影响,为杉木人工林可持续经营提供参考。结果表明:(1)杉木人工林植物-凋落叶-土壤均呈高C低N、P元素格局,两两组分间差异显著(P0.05);成熟叶C/N(38.58)、C/P(376.67)偏低,其养分利用效率较低;与成熟叶相比,凋落叶N、P偏低,C/N、C/P偏高;土壤C/P、N/P偏低,C/N较高,说明土壤P素分解较快而N保存较好,反映了凋落叶分解不利。(2)成熟叶C、P以及根、凋落叶、土壤的C、N、P、C/N、C/P、N/P均受林龄的显著影响;从8年到28年,C、N、P含量在植物体呈先增后减趋势,而在土壤中相反,呈先减后增趋势,但在凋落物中C、P显著减小,且C/P,N/P显著增加,反映杉木林早期对养分需求旺盛,随年龄增大需求减小,凋落物分解受制于P素,加剧中幼期杉木生态系统养分供需矛盾。(3)成熟叶与凋落叶N、C/N、N/P之间显著正相关,凋落叶养分源自成熟叶;成熟叶重吸收率P(0.518—0.645)N(0.292—0.488),即对P的利用效率高于N。凋落叶与土壤C、C/N之间显著负相关,表明土壤C、N来源于凋落叶分解,但凋落叶分解缓慢,导致大量元素滞留于凋落叶,土壤损耗元素得不到补给,两者间养分循环缓慢。土壤与根C、P、C/N、C/P、N/P之间均显著正相关,土壤与成熟叶的C、N、P均不相关,表明土壤养分是杉木生长养分的主要来源,但土壤C、N、P含量对成熟叶C、N、P含量影响不大。  相似文献   

17.
Abstract We investigated the structure, composition and environmental correlates of leaf‐litter invertebrate assemblages in Pinus radiata plantations and in neighbouring native eucalypt woodland in the Jenolan Caves Karst Conservation Reserve, south‐east Australia. Invertebrate assemblages of plantations were compared with remnant eucalypt woodland located well away from the influence of plantations to determine the direct effects of plantations as a result of habitat‐replacement with a non‐native plantation species. We also included in our comparisons edge habitat of eucalypt woodland located immediately adjacent to plantations. This unique edge habitat is exposed to the intrusion of large volumes of pine leaf‐litter from plantations, which has the potential to affect indirectly invertebrate assemblages of surrounding woodland. We found that species richness of invertebrates was significantly lower in pine plantations compared with remnant eucalypt woodland. There was a complete absence of species from 12 invertebrate orders that were found in surrounding eucalypt woodland. A rich and abundant native plant understorey that provides increased habitat heterogeneity is the most likely explanation for the richer invertebrate assemblage found in remnant eucalypt woodland. The total abundance of all invertebrate taxa in pine plantations in winter was significantly higher than in remnant eucalypt woodland, pine‐litter edges and pine‐free edges. Plantations were characterized by particularly high abundances of species in two orders, Acari and Collembola. High abundances of acarine and collembolan species in plantations were associated with a decompositional environment represented by comparatively higher moisture contents and higher C : N ratios of both leaf‐litter and soil, higher soil conductivity and lower soil pH. We suggest that implementation of The Plantation Biodiversity Benefits Score will be a fruitful way forward to assess the environmental benefits that can be gained from pine plantations in this region of south‐eastern Australia.  相似文献   

18.

Background and aims

Litter decomposition is a key process controlling flows of energy and nutrients in ecosystems. Altered biodiversity and nutrient availability may affect litter decomposition. However, little is known about the response of litter decomposition to co-occurring changes in species evenness and soil nutrient availability.

Methods

We used a microcosm experiment to evaluate the simultaneous effects of species evenness (two levels), identity of the dominant species (three species) and soil N availability (control and N addition) on litter decomposition in a Mongolian pine (Pinus sylvestris var. mongolica) plantation in Northeast China. Mongolian pine needles and senesced aboveground materials of two dominant understory species (Setaria viridis and Artemisia scoparia) were used for incubation.

Results

Litter evenness, dominant species identity and N addition significantly affected species interaction and litter decomposition. Higher level of species evenness increased the decomposition rate of litter mixtures and decreased the incidence of antagonistic effects. A. scoparia-dominated litter mixtures decomposed faster than P. sylvestris var. mongolica- and S. viridis-dominated litter mixtures. Notably, N addition increased decomposition rate of both single-species litters and litter mixtures, and meanwhile altered the incidence and direction of non-additive effects during decomposition of litter mixtures. The presence of understory species litters stimulated the decomposition rate of pine litters irrespective of N addition, whereas the presence of pine litters suppressed the mass loss of A. scoparia litters. Moreover, N addition weakened the promoting effects of understory species litters on decomposition of pine litters.

Conclusions

Pine litter retarded the decomposition of understory species litters whereas its own decomposition was accelerated in mixtures. Nitrogen addition and understory species evenness altered species interaction through species-specific responses in litter mixtures and thus affected litter decomposition in Mongolian pine forests, which could produce a potential influence on ecosystem C budget and nutrient cycling.  相似文献   

19.
Sun  Zhongyu  Huang  Yuhui  Yang  Long  Guo  Qinfeng  Wen  Meili  Wang  Jun  Liu  Nan 《Landscape and Ecological Engineering》2020,16(2):151-162

Litter decomposition, an important component of nutrient cycling, is often one of the limiting factors for the development of monoculture tree plantations for restoration, and how to improve the litter decomposition rate remains as a major challenge. To help resolve this issue, we developed a mixed-litter transplantation approach to improve the litter decomposition and nutrient cycling in Schima superba, Cunninghamia lanceolata, Eucalyptus urophylla, and Acacia mangium monoculture plantations in China. The monospecific leaf litters of the four species were collected and their possible two-, three- and four-species combinations were transplanted between plantations. We examined the influences of home/away field, litter species richness, and litter composition on litter decomposition during 24 months treatment. A significant effect of litter composition on litter decomposition (Duration?×?Composition effect) was detected in E. urophylla plantation. The influence of litter richness on litter decomposition was significant in A. mangium plantation (Duration?×?Richness effect). The litter of C. lanceolata and A. mangium had a distinct home-field advantage, while the litter of S. superba had a distinct away-field advantage in decomposition. We observed a positive relationship between richness and litter decomposition in C. lanceolate plantation. The effect of Duration?×?Species Interaction on litter decomposition, was significant in E. urophylla plantation, indicating a non-additive effect. Litter decomposition in E. urophylla plantation could be explained by idiosyncratic model, and the rivet model may be appropriate to illustrate the litter decomposition in A. mangium plantation. Finally, since the litter decomposition in degraded A. mangium plantations had a distinct home-field advantage and was significantly affected by litter richness, transplanting mixed litters of neighboring plantations may be beneficial to improve its litter decomposition rate. Transplanting of S. superba litters due to the distinct home-field advantage to neighboring plantations such as E. urophylla plantation whose litter decomposition is significantly affected by litter composition, may be an effective management method for improving litters decomposition.

  相似文献   

20.
13C NMR study of pine needle decomposition   总被引:1,自引:0,他引:1  
Parfitt  Roger L.  Newman  Roger H. 《Plant and Soil》2000,219(1-2):273-278
The quality of substrates in plantation forest litter, and their chemistry, can influence decomposition and N cycling. We studied the decomposition of Pinus radiata D. Don needles suspended on branches in windrows, for 3 yr after clear-cutting, using improved solid-state 13C NMR and chemical analysis. The NMR spectra suggested that the concentration of condensed tannins was 12–22%, and showed they were chemically altered during the period 4–12 months after clear-cutting. The spectra showed no evidence for further chemical modification of the tannins during the second or third years. Data for P. radiata needle decomposition in New Zealand indicated rapid loss of mass in the first 3 months, and condensed tannins did not appear to prevent mineralization of C or N. The tannin and lignin concentrations increased with decomposition of the needles, which was consistent with the early mineralization of readily available C compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号