首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   7篇
  国内免费   24篇
  2024年   1篇
  2022年   3篇
  2021年   12篇
  2020年   9篇
  2019年   3篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   11篇
  2013年   12篇
  2012年   17篇
  2011年   6篇
  2010年   3篇
  2009年   4篇
  2008年   6篇
  2007年   4篇
  2006年   1篇
  2005年   9篇
  2004年   11篇
  2003年   4篇
  2002年   6篇
  2001年   3篇
  1998年   2篇
  1997年   5篇
  1995年   1篇
排序方式: 共有142条查询结果,搜索用时 31 毫秒
1.
蒲洼农业生态系统能流的稳定性及其动态   总被引:1,自引:0,他引:1  
徐明  潘向丽 《生态学报》1995,15(1):72-78
在研究生态系统结构及功能的基础上,本文基于1975-1990年的数据,对蒲洼农业生态系统能流的稳定性及其动态进行了分析。通过建立能流模型,由李雅普诺夫稳定性原理,得出该生态系统能流的平衡态具有渐近稳定性。动态数学模拟表明,目前该系统的能量流动正从不稳定状态向稳定和平衡态过渡,这一过程大约需要7a时间。  相似文献   
2.
3.
Gene therapy has become the most effective treatment for monogenic diseases. Congenital LEPTIN deficiency is a rare autosomal recessive monogenic obesity syndrome caused by mutations in the Leptin gene. Ob/ob mouse is a monogenic obesity model, which carries a homozygous point mutation of C to T in Exon 2 of the Leptin gene. Here, we attempted to edit the mutated Leptin gene in ob/ob mice preadipocytes and inguinal adipose tissues using CRISPR/Cas9 to correct the C to T mutation and restore the production of LEPTIN protein by adipocytes. The edited preadipocytes exhibit a correction of 5.5% of Leptin alleles and produce normal LEPTIN protein when differentiated into mature adipocytes. The ob/ob mice display correction of 1.67% of Leptin alleles, which is sufficient to restore the production and physiological functions of LEPTIN protein, such as suppressing appetite and alleviating insulin resistance. Our study suggests CRISPR/Cas9-mediated in situ genome editing as a feasible therapeutic strategy for human monogenic diseases, and paves the way for further research on efficient delivery system in potential future clinical application.  相似文献   
4.
Wang  Yuhan  Wang  Dianhong  Zhang  Xiangli  Huang  Tianye  Zhao  Xiang  Zeng  Shuwen 《Plasmonics (Norwell, Mass.)》2021,16(2):463-469
Plasmonics - By introducing the sub-wavelength grating (SWG) waveguide in the long-range surface phonon resonance (LRSPhR) device, a mid-infrared Fano resonance is formed due to the coupling...  相似文献   
5.
Metastasis of colon cancer cells increases the risk of colon cancer mortality. We have recently shown that American ginseng prevents colon cancer, and a Hexane extract of American Ginseng (HAG) has particularly potent anti-inflammatory and anti-cancer properties. Dysregulated microRNA (miR) expression has been observed in several disease conditions including colon cancer. Using global miR expression profiling, we observed increased miR-29b in colon cancer cells following exposure to HAG. Since miR-29b plays a role in regulating the migration of cancer cells, we hypothesized that HAG induces miR-29b expression to target matrix metalloproteinase-2 (MMP-2) thereby suppressing the migration of colon cancer cells. Results are consistent with this hypothesis. Our study supports the understanding that targeting MMP-2 by miR-29b is a mechanism by which HAG suppresses the migration of colon cancer cells.  相似文献   
6.
Stomatal movement plays a key role in plant development and response to drought and salt stress by regulating gas exchange and water loss. A number of genes have been demonstrated to be involved in the regulation of this process. Using inverse genetics approach, we characterized the function of a rice (Oryza sativa L.) vacuolar H+-ATPase subunit A (OsVHA-A) gene in stomatal conductance regulation and physiological response to salt and osmotic stress. OsVHA-A was constitutively expressed in different rice tissues, and the fusion protein of GFP-OsVHA-A was exclusively targeted to tonoplast when transiently expressed in the onion epidermal cells. Heterologous expression of OsVHA-A was able to rescue the yeast mutant vma1Δ (lacking subunit A activity) phenotype, suggesting that it partially restores the activity of V-ATPase. Meanwhile, RNAi-directed knockdown of OsVHA-A led to a reduction of vacuolar H+-ATPase activity and an enhancement of plasma membrane H+-ATPase activity, thereby increasing the concentrations of extracellular H+ and intracellular K+ and Na+ under stress conditions. Knockdown of OsVHA-A also resulted in the upregulation of PAM3 (plasma membrane H+-ATPase 3) and downregulation of CAM1 (calmodulin 1), CAM3 (calmodulin 3) and YDA1 (YODA, a MAPKK gene). Altered level of the ion concentration and the gene expression by knockdown of OsVHA-A probably resulted in expanded aperture of stomatal pores and increased stomatal density. In addition, OsVHA-A RNAi plants displayed significant growth inhibition under salt and osmotic stress conditions. Taken together, our results suggest that OsVHA-A takes part in regulating stomatal density and opening via interfering with pH value and ionic equilibrium in guard cells and thereby affects the growth of rice plants.  相似文献   
7.
8.
It has been demonstrated that a wide variety of white blood cells and macrophages (i.e. Kupffer cells, alveolar and peritoneal macrophages and neutrophils) contain glycine-gated chloride channels. Binding of glycine on the receptor stimulates Cl? influx causing membrane hyperpolarization that prevents agonist-induced influx of calcium. Since platelet-aggregation is calcium-dependent, this study was designed to test the hypothesis that glycine would inhibit platelet aggregation. Rats were fed diets rich of glycine for 5 days, while controls received isonitrogenous valine. The bleeding time and ADP- and collagen-induced platelet aggregation were measured. Dietary glycine significantly increased bleeding time about twofold compared to valine-treated controls. Furthermore, the amplitude of platelet aggregation stimulated with ADP or collagen was significantly decreased in whole blood drawn from rats fed 2.5 or 5 % dietary glycine by over 50 %. Addition of glycine in vitro (1–10 mM) also blunted rat platelet aggregation in a dose-dependent manner. Strychnine, a glycine receptor antagonist, abrogated the inhibitory effect of glycine on platelet-aggregation in vitro suggesting the glycine works via a glycine receptor. Glycine also blunted aggregation of human platelets. Further, the glycine receptor was detected in both rat and human platelets by western blotting. Based on these data, it is concluded that glycine prevents aggregation of platelets in a dose-dependent manner via mechanisms involving a glycine receptor.  相似文献   
9.
Protein Arginine Deiminases (PADs) catalyze the post-translational conversion of peptidyl-Arginine to peptidyl-Citrulline in a calcium-dependent, irreversible reaction. Evidence is emerging that PADs play a role in carcinogenesis. To determine the cancer-associated functional implications of PADs, we designed a small molecule PAD inhibitor (called Chor-amidine or Cl-amidine), and tested the impact of this drug on the cell cycle. Data derived from experiments in colon cancer cells indicate that Cl-amidine causes a G1 arrest, and that this was p53-dependent. In a separate set of experiments, we found that Cl-amidine caused a significant increase in microRNA-16 (miRNA-16), and that this increase was also p53-dependent. Because miRNA-16 is a putative tumor suppressor miRNA, and others have found that miRNA-16 suppresses proliferation, we hypothesized that the p53-dependent G1 arrest associated with PAD inhibition was, in turn, dependent on miRNA-16 expression. Results are consistent with this hypothesis. As well, we found the G1 arrest is at least in part due to the ability of Cl-amidine-mediated expression of miRNA-16 to suppress its'' G1-associated targets: cyclins D1, D2, D3, E1, and cdk6. Our study sheds light into the mechanisms by which PAD inhibition can protect against or treat colon cancer.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号