首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   8篇
  2021年   1篇
  2020年   3篇
  2019年   2篇
  2017年   2篇
  2016年   5篇
  2015年   4篇
  2014年   2篇
  2013年   7篇
  2012年   5篇
  2011年   7篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2007年   6篇
  2006年   4篇
  2005年   1篇
  2004年   3篇
  2003年   4篇
  2002年   3篇
  2001年   1篇
  2000年   3篇
  1999年   3篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1983年   1篇
  1979年   1篇
  1978年   1篇
  1977年   3篇
  1974年   1篇
  1972年   1篇
排序方式: 共有87条查询结果,搜索用时 31 毫秒
1.
Accumulating evidence has revealed that livin gene and BCL-2 modifying factor (BMF) gene are closely associated with the initiation and progression of colon carcinoma by activating or suppressing multiple malignant processes. Those genes that can detect colon - cancer are a promising approach for cancer screening and diagnosis. This study aimed to evaluate correlation between livin, BMF and p53 genes expression in colon cancer tissues of patients included in the study, and their relationship with clinicopathological features and survival outcome in those patients. In this study, 50 pathologically diagnosed early cancer colon patients included and their tissue biopsy with 50 matched adjacent normal tissue, and 50 adenoma tissue specimens were analyzed for livin gene and BMF gene expressions using real time PCR. The relationship of those genes expressions with clinicopathological features, tumor markers, Time to Progression and overall survival for those patients were correlated in cancer colon group. In this study, there was a significant a reciprocal relationship between over expression of livin gene and down regulation of BMF and p53 genes in colon cancer cells. Livin mRNA was significantly higher, while BMF and p53 mRNA were significantly lower in colorectal cancer tissue compared to benign and normal colon tissue specimens (P < 0.001), however, this finding was absent between colon adenomas and normal mucosa. There was a significant association between up regulation of livin and down regulation of BMF and p53 expressions with more aggressive tumor (advanced TNM stage), rapid progression with metastasis and decreased overall survival in cancer colon patients, hence these genes can serve as significant prognostic markers of poor outcome in colon cancer patients. This work highlights the role of livin, BMF and p53 genes in colorectal tumorigenesis and the applicability of using those genes as a diagnostic and prognostic markers in patients with colon carcinoma and as a good target for cancer colon treatment in the future.  相似文献   
2.
Essential oils of fennel, peppermint, caraway, eucalyptus, geranium and lemon were tested for their antimicrobial activities against some plant pathogenic micro-organisms (Fusarium oxysporum, Alternaria alternate, Penicilium italicum Penicilium digitatum and Botyritus cinerea). Essential oils of fennel, peppermint, caraway were selected as an active ingredient for the formulation of biocides due to their efficiency in controlling the tested micro-organisms. Successful emulsifiable concentrates (biocides) were prepared from these oils using different emulsifiers (Emulgator B.L.M. Tween20 and Tween80) and different fixed oils (sesame, olive, cotton and soybean oils). Physico-chemical properties of the formulated biocide (spontaneous emulsification, emulsion stability test, cold stability and heat stability tests as well as viscosity, surface tension and pH) were measured. The prepared biocides were ready to be tested for application in a future work as a safe pesticide against different pathogens.  相似文献   
3.

Purpose

In order to reduce its environmental impact, the chemical industry no longer produces base chemicals such as ethylene, solely from fossil, but also from biomass-based feedstocks. However, a biomass option suitable for one region might not be as suitable for another region due to, e.g., long transport and the related environmental. Therefore, local biomass alternatives and the environmental impact related to the production of chemicals from these alternatives need to be investigated. This study assesses the environmental impact of producing ethylene from Swedish wood ethanol.

Methods

The study was conducted following the methodology of life cycle assessment. The life cycle was assessed using a cradle-to-gate perspective for the production of 50,000 tonnes ethylene/year for the impact categories global warming, acidification (ACP), photochemical ozone creation, and eutrophication (EP).

Results and discussion

The production of enzymes used during the life cycle had a significant effect on all investigated impacts. However, reduced consumption of enzyme product, which could possibly be realized considering the rapid development of enzymes, lowered the overall environmental impact of the ethylene. Another approach could be to use alternative hydrolyzing agents. However, little information on their environmental impact is available. An additional key contributor, with regard to ACP, EP, and POCP, was the ethanol production. Therefore, further improvements with regard to the process’ design may have beneficial effects on its environmental impact.

Conclusions

The study assessed the environmental impact of wood ethylene and pointed to several directions for improvements, such as improved enzyme production and reduced consumption of enzyme products. Moreover, the analysis showed that further investigations into other process options and increase of ethylene production from biomass are worth continued research.  相似文献   
4.
Organic Lake is a shallow, marine-derived hypersaline lake in the Vestfold Hills, Antarctica that has the highest reported concentration of dimethylsulfide (DMS) in a natural body of water. To determine the composition and functional potential of the microbial community and learn about the unusual sulfur chemistry in Organic Lake, shotgun metagenomics was performed on size-fractionated samples collected along a depth profile. Eucaryal phytoflagellates were the main photosynthetic organisms. Bacteria were dominated by the globally distributed heterotrophic taxa Marinobacter, Roseovarius and Psychroflexus. The dominance of heterotrophic degradation, coupled with low fixation potential, indicates possible net carbon loss. However, abundant marker genes for aerobic anoxygenic phototrophy, sulfur oxidation, rhodopsins and CO oxidation were also linked to the dominant heterotrophic bacteria, and indicate the use of photo- and lithoheterotrophy as mechanisms for conserving organic carbon. Similarly, a high genetic potential for the recycling of nitrogen compounds likely functions to retain fixed nitrogen in the lake. Dimethylsulfoniopropionate (DMSP) lyase genes were abundant, indicating that DMSP is a significant carbon and energy source. Unlike marine environments, DMSP demethylases were less abundant, indicating that DMSP cleavage is the likely source of high DMS concentration. DMSP cleavage, carbon mixotrophy (photoheterotrophy and lithoheterotrophy) and nitrogen remineralization by dominant Organic Lake bacteria are potentially important adaptations to nutrient constraints. In particular, carbon mixotrophy relieves the extent of carbon oxidation for energy production, allowing more carbon to be used for biosynthetic processes. The study sheds light on how the microbial community has adapted to this unique Antarctic lake environment.  相似文献   
5.
Type 1 diabetes is caused by the destruction of insulin producing beta cells by the immune system. The p110δ isoform of PI3K is expressed primarily in cells of haematopoietic origin and the catalytic activity of p110δ is important for the activation of these cells. Targeting of this pathway offers an opportunity to reduce immune cell activity without unwanted side effects. We have explored the effects of a specific p110δ isoform inhibitor, IC87114, on diabetogenic T cells both in vitro and in vivo, and find that although pharmacological inhibition of p110δ has a considerable impact on the production of pro-inflammatory cytokines, it does not delay the onset of diabetes after adoptive transfer of diabetogenic cells. Further, we demonstrate that combination treatment with CTLA4-Ig does not improve the efficacy of treatment, but instead attenuates the protective effects seen with CTLA4-Ig treatment alone. Our results suggest that decreased IL-10 production by Foxp3+ CD4+ T cells in the presence of IC87114 negates individual anti-inflammatory effects of IC8114 and CTLA4-Ig.  相似文献   
6.
Arsenic, an established carcinogen and toxicant, occurs in drinking water and food and affects millions of people worldwide. Arsenic appears to interfere with gene expression through epigenetic processes, such as DNA methylation and post-translational histone modifications. We investigated the effects of arsenic on histone residues in vivo as well as in vitro. Analysis of H3K9Ac and H3K9me3 in CD4+ and CD8+ sorted blood cells from individuals exposed to arsenic through drinking water in the Argentinean Andes showed a significant decrease in global H3K9me3 in CD4+ cells, but not CD8+ cells, with increasing arsenic exposure. In vitro studies of inorganic arsenic-treated T lymphocytes (Jurkat and CCRF-CEM, 0.1, 1, and 100 μg/L) showed arsenic-related modifications of H3K9Ac and changes in the levels of the histone deacetylating enzyme HDAC2 at very low arsenic concentrations. Further, in vitro exposure of kidney HEK293 cells to arsenic (1 and 5 μM) altered the protein levels of PCNA and DNMT1, parts of a gene expression repressor complex, as well as MAML1. MAML1 co-localized and interacted with components of this complex in HEK293 cells, and in silico studies indicated that MAML1 expression correlate with HDAC2 and DNMT1 expression in kidney cells. In conclusion, our data suggest that arsenic exposure may lead to changes in the global levels of H3K9me3 and H3K9Ac in lymphocytes. Also, we show that arsenic exposure affects the expression of PCNA and DNMT1—proteins that are part of a gene expression silencing complex.  相似文献   
7.
8.
9.
We have shown that yeast mutants with defects in the Ada adaptor proteins are defective in hormone-dependent gene activation by ectopically expressed human glucocorticoid receptor (GR). Others have shown that the Ada2 protein is required for physical interactions between some activation domains and TBP (TATA-binding protein), whereas the Gcn5 (Ada4) protein has a histone acetyltransferase (HAT) activity. Although all HAT enzymes are able to acetylate histone substrates, some also acetylate non-histone proteins. Taken together, these observations suggest that the Ada proteins have the ability to effect different steps in the process of gene activation. It has recently been shown that the Ada proteins are present in two distinct protein complexes, the Ada complex and a larger SAGA complex. Our recent work has focused on determining (1) which of the Ada-containing complexes mediates gene activation by GR, (2) whether the HAT activity encoded by GCN5 is required for GR-dependent gene activation, (3) whether the Ada proteins contribute to GR-mediated activation at the level of chromatin remodelling and (4) how the role of these HAT complexes is integrated with other chromatin remodelling activities during GR-mediated gene activation. Our results suggest a model in which GR recruits the SAGA complex and that this contributes to chromatin remodelling via a mechanism involving the acetylation of histones. Furthermore, recruitment of the SWI/SNF remodelling complex also has a role in GR-mediated activation that is independent of the role of SAGA. These complexes are similar to analogous mammalian complexes and therefore these results are likely to be relevant to the human system.  相似文献   
10.
The effect of nutrient enrichment on the distribution of polychlorinated biphenyl's (PCBs) in the microbial food web and the residence time of PCBs in seawater was studied in an experimental mesocosm system. Two 5 m high temperature and light controlled mesocosm tubes (⊘ = 0,5 m) were filled with seawater from the northern Baltic Sea. Inorganic phosphorus and nitrogen were added daily to one mesocosm, while the other served as a control. Experiments were conducted at 5, 10 and 20°>C. Three 14C-labelled PCBs of different degree of chlorination were added to subsamples of the mesocosms: 4 chlorobiphenyl (MCB), IUPAC # 3; 2,2′,5,5′-tetrachlorobiphenyl (TCB), IUPAC # 52 and 2,2′, 4,4′,5,5′-hexachlorobiphenyl (HCB) IUPAC # 153. The biomasses and growth rates of the microorganisms as well as the sedimentation rate of particulate organic material increased with nutrient enrichment. The size distribution of the microorganisms changed with nutrient status, from dominance of picoplankton (< 2 μm) in the control towards increased importance of micro (> 10 μm) and nanoplankton (2– 10 μm) in nutrient enrichment. The specific growth rate of the bacterial community was found to be more temperature dependent than that of the phytoplankton community. The relative proportion of PCBs in the >2 μm fraction was observed to be in the order MCB < TCB < HCB, while the opposite distribution prevailed in the < 2 μm fraction. We hypothesize that this is due to the combined effect of the different Kow values of the PCBs and a different composition of the particulate organic carbon in the > 2 μm and < 2 μm fractions (e.g. different lipid composition). The residence time of the PCBs in the mesocosm generally decreased with nutrient enrichment, but was dependent on the degree of chlorination of the PCB. Our results indicate that the transport of organic pollutants up through the food web is more important in nutrient poor than in nutrient rich waters and that the importance of sedimentation is higher in eutrophic ecosystems. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号