首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   203篇
  免费   33篇
  国内免费   1篇
  2016年   3篇
  2013年   2篇
  2012年   6篇
  2011年   6篇
  2010年   6篇
  2009年   14篇
  2008年   10篇
  2007年   9篇
  2006年   7篇
  2005年   13篇
  2004年   6篇
  2003年   4篇
  2002年   3篇
  2001年   3篇
  2000年   4篇
  1999年   5篇
  1998年   4篇
  1997年   7篇
  1996年   7篇
  1995年   3篇
  1994年   4篇
  1993年   3篇
  1991年   8篇
  1990年   10篇
  1988年   4篇
  1987年   5篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
  1981年   9篇
  1980年   6篇
  1979年   7篇
  1978年   9篇
  1977年   2篇
  1976年   4篇
  1975年   3篇
  1974年   2篇
  1972年   2篇
  1971年   12篇
  1970年   2篇
  1955年   1篇
  1944年   2篇
  1939年   1篇
  1938年   3篇
  1937年   2篇
  1936年   1篇
  1935年   1篇
  1922年   1篇
  1921年   1篇
  1920年   1篇
排序方式: 共有237条查询结果,搜索用时 218 毫秒
1.
2.
3.
As part of our research on peroxisome biogenesis, catalase was purified from cotyledons of dark-grown cotton (Gossypium hirsutum L.) seedlings and monospecific antibodies were raised in rabbits. Purified catalase appeared as three distinct electrophoretic forms in non-denaturing gels and as a single protein band (with a subunit Mr of 57,000) on silver-stained SDS/polyacrylamide gels. Western blots of crude extracts and isolated peroxisomes from cotton revealed one immunoreactive polypeptide with the same Mr (57,000) as the purified enzyme, indicating that catalase did not undergo any detectable change in Mr during purification. Synthesis in vitro, directed by polyadenylated RNA isolated from either maturing seeds or cotyledons of dark-grown cotton seedlings, revealed a predominant immunoreactive translation product with a subunit Mr of 57,000 and an additional minor immunoreactive product with a subunit Mr of 64000. Labelling studies in vivo revealed newly synthesized monomers of both the 64000- and 57,000-Mr proteins present in the cytosol and incorporation of both proteins into the peroxisome without proteolytic processing. Within the peroxisome, the 57,000-Mr catalase was found as an 11S tetramer; whereas the 64,000-Mr protein was found as a relatively long-lived 20S aggregate (native Mr approx. 600,000-800,000). The results strongly indicate that the 64,000-Mr protein (catalase?) is not a precursor to the 57,000-Mr catalase and that cotton catalase is translated on cytosolic ribosomes without a cleavable transit or signal sequence.  相似文献   
4.
The changes in activities of glyoxysomal and peroxisomal enzymes have been correlated with the fine structure of microbodies in cotyledons of the cucumber (Cucumis sativus L.) during the transition from fat degradation to photosynthesis in light-grown plants, and in plants grown in the dark and then exposed to light. During early periods of development in the light (days 2 through 4), the microbodies (glyoxysomes) are interspersed among lipid bodies and contain relatively high activities of glyoxylate cycle enzymes involved in lipid degradation. Thereafter, these activities decrease rapidly as the cotyledons expand and become photosynthetic, and the activity of glycolate oxidase rises to a peak (day 7); concomitantly the microbodies (peroxisomes) become preferentially associated with chloroplasts.  相似文献   
5.
Five charge isoforms of tetrameric catalase were isolated from cotyledons of germinated cotton (Gossypium hirsutum L.) seedlings. Denaturing isoelectric focusing of the individual isoforms in polyacrylamide gels indicated that isoforms A (most anodic) and E (most cathodic) consisted of one subunit of different charge, whereas isoforms B, C and D each consisted of a mixture of these two subunits. Thus the five isoforms apparently were formed through combinations of two subunits in different ratios. Labelling cotyledons in vivo with [35S]methionine at three daily intervals in the dark, and translation in vivo of polyadenylated RNA isolated from cotyledons at the same ages, revealed synthesis of two different subunits. One of the subunits was synthesized in cotyledons at all ages studied (days 1-3), whereas the other subunit was detected only at days 2 and 3. This differential expression of two catalase subunits helped explain previous results from this laboratory showing that the two anodic forms (A and B) found in maturing seeds were supplemented with three cathodic forms (C-E) after the seeds germinated. These subunit data also helped clarify our new findings that proteins of isoforms A, B and C (most active isoforms) accumulated in cotyledons of plants kept in the dark for 3 days, then gradually disappeared during the next several days, whereas isoforms D and E (least active isoforms) remained in the cells. This shift in isoform pattern occurred whether seedlings were kept in the dark or exposed to continuous light after day 3, although exposure to light enhanced this process. These sequential molecular events were responsible for the characteristic developmental changes (rise and fall) in total catalase activity. We believe that the isoform changeover is physiologically related to the changeover in glyoxysome to leaf-type-peroxisome metabolism.  相似文献   
6.
Summary The potential of tobacco BY-2 suspension-cultured cells for examining in vivo targeting and import of proteins into plant peroxisomes was shown recently in our laboratory. In the current study, the necessity and sufficiency of putative C-terminal targeting signals on cottonseed malate synthase and bacterial chloramphenicol acetyl-transferase (CAT) were examined in BY-2 cells. Cotton suspension cells also were evaluated as another in vivo peroxisome targeting system. Ultrastructural views of BY-2 cells showed that the peroxisomes were relatively small (0.1-0.3 m diameter), a characteristic of so-called unspecialized peroxisomes, Peroxisomes in cotton and tobacco cells were identified with anti-cottonseed catalase IgGs as distinct immunofluorescent particles clearly distinguishable from abundant immunofluorescent mitochondria and plastids, marked with antibodies to -ATPase and stearoyl-ACP 9 desaturase, respectively. The C-terminal ser-lys-leu (SKL) motif is a well-established peroxisome targeting signal (PTS 1) for mammals and yeasts, but not for plants. Antiserum raised against SKL peptides recognized proteins only in peroxisomes in cotton and tobacco cells. The necessity of SKL-COOH for targeting of proteins to plant peroxisomes had not been demonstrated; we showed that SKL-COOH was necessary for directing cottonseed malate synthase to BY-2 peroxisomes. KSRM-COOH, a conservative modification of SKL-COOH, was shown by others to be sufficient for redirecting CAT in stably-transformed Arabidopsis plants to the leaf peroxisomes. Here we show with the same CAT constructs (e.g., pMON316CAT-KSRM) that KSRM is sufficient for targeting transiently-expressed passenger proteins to unspecialized BY-2 peroxisomes. These results provide new direct evidence for the necessity of SKL-COOH (a type 1 PTS) and sufficiency of a conservative modification of the PTS 1 (KSRM-COOH) for in vivo, heterologous targeting of proteins to plant peroxisomes.Abbreviations CAT chloramphenicol acetyltransferase - CHO cells Chinese hamster ovary cells - DAB 3,3-diaminobenzidine - GUS -glucuronidase - ICL isocitrate lyase - KSRM lysine-serine-arginine-methionine - MS malate synthase - PBS phosphate-buffered saline - PTS peroxisome targeting signal - SKL serine-lysine-leucine - tobacco BY-2 Bright Yellow-2 Dedicated to Professor Eldon H. Newcomb in recognition of his contributions to cell biology  相似文献   
7.
Immunoglobulins are encoded by a large multigene system that undergoes somatic rearrangement and additional genetic change during the development of immunoglobulin-producing cells. Inducible antibody and antibody-like responses are found in all vertebrates. However, immunoglobulin possessing disulfide-bonded heavy and light chains and domain-type organization has been described only in representatives of the jawed vertebrates. High degrees of nucleotide and predicted amino acid sequence identity are evident when the segmental elements that constitute the immunoglobulin gene loci in phylogenetically divergent vertebrates are compared. However, the organization of gene loci and the manner in which the independent elements recombine (and diversify) vary markedly among different taxa. One striking pattern of gene organization is the "cluster type" that appears to be restricted to the chondrichthyes (cartilaginous fishes) and limits segmental rearrangement to closely linked elements. This type of gene organization is associated with both heavy- and light-chain gene loci. In some cases, the clusters are "joined" or "partially joined" in the germ line, in effect predetermining or partially predetermining, respectively, the encoded specificities (the assumption being that these are expressed) of the individual loci. By relating the sequences of transcribed gene products to their respective germ-line genes, it is evident that, in some cases, joined-type genes are expressed. This raises a question about the existence and/or nature of allelic exclusion in these species. The extensive variation in gene organization found throughout the vertebrate species may relate directly to the role of intersegmental (V<==>D<==>J) distances in the commitment of the individual antibody-producing cell to a particular genetic specificity. Thus, the evolution of this locus, perhaps more so than that of others, may reflect the interrelationships between genetic organization and function.   相似文献   
8.
The reversibly photochromic pigment, phycochrome c, was extracted from the blue-green alga Nostoc muscorum strain A. Action spectra were determined for in vitro conversions of the pigment from the short wavelength to the long wavelength form and vice versa. The action peak for the absorbance decrease at 650 nm is at 630 nm. During this decrease there is only a slight increase of the absorbance in the green region. Green and yellow light (maximum efficiency at 580 nm) completely restores absorbance at 650 nm. The observations are explained by the existence of three spectrally different forms of phycochrome c: Pc630 and Pc650 which equilibrate in darkness and Pc580 which is reversibly photoconvertible to Pc630. We have also measured the absorbance changes brought about by saturating irradiations with light of various wavelengths (“photostationary state spectrum”). Extreme photostationary states were obtained with about 650 nm and 500 nm light.  相似文献   
9.
Photosynthetic electron transport and low-temperature fluorescence emission properties have been analyzed in isolated chloroplasts during the course of frost hardening and dehardening of Pinus silvestris L. Both the partial electron-transport reactions (H2O DPIP and Asc./DPIP NADP) and the overall electron transport (H2O — NAPD) showed decreasing capacities during the course of hardening. Upon exposing the plants to ?5°C and high irradiance a block in the electron-transport chain between the two photosystems developed, whereas the partial reactions still showed activities. The decrease in activity of PSl was accompanied by a decrease in P700 content, as determined by light oxidation of P700, which indicates a correlation between the two changes. Hardening also induced changes in the in vivo chlorophyll organization. During the course of hardening the fluorescence emission bands F692 and F726 decreased relative to F680. These changes were more pronounced if the plants were treated in high than in low irradiance. This suggests a greater destruction of the chlorophyll antennae in close association with the two photoreactions than in the so-called light-harvesting chlorophyll a/b antenna. During dehardening basically the reverse of the changes observed during hardening occurred. The recovery of secondary needles was complete, whereas primary needles only partly recovered.  相似文献   
10.
Two genes encode the two subunits of cottonseed catalase   总被引:4,自引:0,他引:4  
The isolation and sequence of a cDNA encoding a developmentally distinct subunit of cottonseed catalase are presented. A 1.8-kb cDNA was selected from a cDNA library constructed with poly(A)+ RNA isolated from 3-day-old dark-grown cotyledons in which a second subunit (designated SU 2 in an earlier publication) of catalase was predominantly synthesized. The cDNA encodes a 492-amino acid peptide with a calculated Mr of 56,900. The nucleotide sequence is 76% identical to a cDNA encoding another subunit (SU 1) which was predominantly synthesized in 1-day-old-cotyledons. Most of the divergence occurs in the 5' and 3' non-coding regions, and at the third positions of the codons. The deduced amino acid sequence is 92% identical to that of SU 1. Denaturing isoelectric focusing and SDS-PAGE of products transcribed and translated in vitro from these cDNAs revealed that the cDNA selected from the "1-day" library encoded SU 1 and the cDNA selected from the "3-day" library (this paper) encoded SU 2 of catalase. These data and results from Southern blot analyses of genomic DNA indicate that there are two genes encoding catalase subunits in cotton cotyledons, with only one copy of SU 1 and at least two copies of SU 2 in the genome. A peroxisomal targeting signal, e.g., Ser-Lys-Leu, is not located at the C-terminus of either subunit, or within 25 residues of the C-terminus of SU 1, although it occurs at six residues upstream from the C-terminus of SU 2. A possible location of a targeting sequence for catalase and other peroxisomal proteins lacking the C-terminal tripeptide motif is proposed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号