首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   1篇
  2016年   2篇
  2014年   1篇
  2012年   2篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   4篇
  2005年   4篇
  2004年   3篇
  2002年   1篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1979年   1篇
  1973年   1篇
  1969年   1篇
排序方式: 共有44条查询结果,搜索用时 250 毫秒
1.
The coexistence and coevolution of sexual and asexual species under resource competition are explored with three models: a nongenetic ecological model, a model including single locus genetics, and a quantitative-genetic model. The basic assumption underlying all three models is that genetic differences are translated into ecological differences. Hence if sexual species are genetically more variable, they will be ecologically more variable. Under classical competition theory, this increased ecological variability can, in many cases, be an advantage to individual sexual genotypes and to the sexual species as a whole. The purpose of this paper is to determine the conditions when this advantage will outway three disadvantages of sexuality: the costs of males, of segregation, and of the additive component of recombination. All three models reach similar conclusions. Although asexuality confers an advantage, it is much less than a two-fold advantage because minor increases in the overall species niche width of the sexual species will offset the reproductive advantage of the asexual species. This occurs for two reasons. First, an increase in species niche width increases the resource base of the sexual species. Second, to the extent that the increase in niche width is due to increased differences between individuals, a reduction in intraspecific competition will result. This is not to imply that the sexual species will always win. The prime conditions that enable sexual species to stably coexist with or even supplant an asexual sister species are:
    相似文献   
2.
We investigated how the population dynamics of the same bird species varied in different environments, and how the population dynamics of different species varied in the same environment, by calculating long-term population trends for 59 insectivorous songbird species in 22 regions or strata of eastern and central North America using data from the North American Breeding Bird Survey. Of the 47 species that occurred in more than one region 77% increased in some regions and declined in others. Of the 22 regions 91% had some species that increased and others that decreased. There were only slightly more significant correlations between strata in species trends and between species for stratum trends than would be expected by chance. Because of nonlinearities in the data, the actual patterns of population fluctuations of the same species in different regions and of different species in the same region were even more heterogeneous than suggested by our analyses of linear trends. We conclude that these bird species respond to spatial and temporal variation in their environment in a very individualistic fashion. These individualistic responses show that the extrapolation of population trends gained from a few local studies to a larger spatial scale, and the use of a few indicator species to monitor the status of a broader community, are suspect.  相似文献   
3.
During the 20th century, population ecology and science in general relied on two very different statistical paradigms to solve its inferential problems: error statistics (also referred to as classical statistics and frequentist statistics) and Bayesian statistics. A great deal of good science was done using these tools, but both schools suffer from technical and philosophical difficulties. At the turning of the 21st century (Royall in Statistical evidence: a likelihood paradigm. Chapman & Hall, London, 1997 ; Lele in The nature of scientific evidence: statistical, philosophical and empirical considerations. The University of Chicago Press, Chicago, pp 191–216, 2004a ), evidential statistics emerged as a seriously contending paradigm. Drawing on and refining elements from error statistics, likelihoodism, Bayesian statistics, information criteria, and robust methods, evidential statistics is a statistical modern synthesis that smoothly incorporates model identification, model uncertainty, model comparison, parameter estimation, parameter uncertainty, pre-data control of error, and post-data strength of evidence into a single coherent framework. We argue that evidential statistics is currently the most effective statistical paradigm to support 21st century science. Despite the power of the evidential paradigm, we think that there is no substitute for learning how to clarify scientific arguments with statistical arguments. In this paper we sketch and relate the conceptual bases of error statistics, Bayesian statistics and evidential statistics. We also discuss a number of misconceptions about the paradigms that have hindered practitioners, as well as some real problems with the error and Bayesian statistical paradigms solved by evidential statistics.  相似文献   
4.
In rats, a high carbohydrate fat-free (HCFF) diet, given after fasting, induces both hepatic lipogenic and glycogenic enzymes. In the present study, we evaluated the involvement of Kupffer cells in the metabolic events occurring in the liver during the fasting-refeeding transition. Male Wistar rats were fasted for 48 h and received an intravenous injection of either NaCl 0.9% (Gd-) or 10 mg/kg GdCl(3) (Gd+), an inhibitor of Kupffer cells, then fed for 12 h with a HCFF diet. The comparison of colloidal carbon uptake was similar in rats fasted and in rats fasted and then refed a HCFF diet, thus indicating that refeeding does not affect per se Kupffer cell phagocytic activity. The inhibition of Kupffer cells by GdCl(3) did not affect fatty acid synthase (FAS) induction, as shown by the analysis of both FAS mRNA and activity; refeeding a HCFF diet increased the hepatic triglyceride and glycogen content to the same extent in Gd+ and Gd- rats. Our results do not support the involvement of Kupffer cells in the metabolic events occurring in the liver tissue by feeding a HCFF diet after fasting. However, the discussion supports the involvement of Kupffer cells in the modulation of the hepatic lipid metabolism by other nutrients than carbohydrates.  相似文献   
5.
Connecting geographical distributions with population processes   总被引:2,自引:0,他引:2  
The geographical distribution of a species is determined by a large number of complex processes operating over spatial scales spanning 10 orders of magnitude. Patterns in population processes have been described at numerous scales. We show that two patterns, measured at different scales, jointly allow us to infer heretofore unknown patterns in the distribution of demographic patterns across the geographical range of a species. The resulting model describes three fundamentally different modes of geographical variation in vital rates of populations. One mode is characterized by a positive nonlinear relationship between the maximum rate of population growth and the intensity of intraspecific competition across a geographical range. That is, populations that grow rapidly are also those where individuals experience the greatest per capita negative effect of the presence of other individuals. The second mode of behaviour is described by a negative nonlinear relationship between maximum growth rate and density dependence. Under this scenario, populations with low capacity to grow rapidly have highest intensities of intraspecific competitive effects. A third mode of behaviour is characterized by a weak positive relationship between growth rate and intraspecific competition, with very little geographical variation in maximum growth rate. A survey of studies relating temporal means and variances in population abundance for a variety of species indicate that the second mode of geographical variation in population dynamics across species ranges is the most common, though a few species appear to be characterized by the third mode.  相似文献   
6.
Theoretical models of species' borders: single species approaches   总被引:2,自引:0,他引:2  
The range of potential mechanisms limiting species' distributions in space is nearly as varied and complex as the diversity of life itself. Yet viewed abstractly, a species' border is a geographic manifestation of a species' demographic responses to a spatially and temporally varying world. Population dynamic models provide insight into the different routes by which range limits can arise owing to gradients in demographic rates. In a metapopulation context, for example, range limits may be caused by gradients in extinction rates, colonization rates or habitat availability. We have consider invasion models in uniform and heterogeneous environments as a framework for understanding non-equilibrium range limits, and explore conditions under which invasions may cease to spread leaving behind a stationary range limit. We conclude that non-equilibrial range dynamics need further theoretical and empirical attention.  相似文献   
7.
In mountainous areas, native and non-native plants will be exposed to climate change and increased disturbance in the future. Non-native plants may be more successful than natives in disturbed areas and thus be able to respond quicker to shifting climatic zones. In 2009, monitoring plots were established for populations of a non-native species (Linaria dalmatica) and a closely related native species (Castilleja miniata) on an elevation gradient in the Greater Yellowstone Ecosystem, USA. Population data were collected twice during the growing season for 3 years and used to calculate population vital rates for both species, and to construct population dynamics models for L. dalmatica. Linaria dalmatica vital rates were more associated with climatic/environmental factors than those of C. miniata. Population dynamics models for L. dalmatica showed no trend in population growth rate (λ) vs. elevation. The highest λ corresponded with the lowest vegetation and litter cover, and the highest bare ground cover. All populations with λ < 1 corresponded with the lowest measured winter minimum temperature. There was a negative association between λ and number of weeks of adequate soil moisture, and a weak positive association between λ and mean winter minimum temperature. Variance in vital rates and λ of L. dalmatica suggest broad adaptation within its current range, with the potential to spread further with or without future changes in climate. There is evidence that λ is negatively affected by persistent soil moisture which promotes the growth of other plant species, suggesting that it might expand further if other species were removed by disturbance.  相似文献   
8.
Ecological theory predicts that the presence of temporal autocorrelation in environments can considerably affect population extinction risk. However, empirical estimates of autocorrelation values in animal populations have not decoupled intrinsic growth and density feedback processes from environmental autocorrelation. In this study, we first discuss how the autocorrelation present in environmental covariates can be reduced through nonlinear interactions or by interactions with multiple limiting resources. We then estimated the degree of environmental autocorrelation present in the Global Population Dynamics Database using a robust, model-based approach. Our empirical results indicate that time series of animal populations are affected by low levels of environmental autocorrelation, a result consistent with predictions from our theoretical models. Claims supporting the importance of autocorrelated environments have been largely based on indirect empirical measures and theoretical models seldom anchored in realistic assumptions. It is likely that a more nuanced understanding of the effects of autocorrelated environments is necessary to reconcile our conclusions with previous theory. We anticipate that our findings and other recent results will lead to improvements in understanding how to incorporate fluctuating environments into population risk assessments.  相似文献   
9.
Taper  Mark L.  Zimmerman  Eric M.  Case  Ted J. 《Oecologia》1986,68(3):437-445
Summary Emergence success was determined for 1300 galls of the cynipid waspDryocosmus dubiosus. Galls were collected throughout a single host tree (a California coast live oakQuercus agrifolia). Each gall was reared individually in small gelatin capsules. For each gall data was recorded on 17 parameters characterizing hyperparasitism, fungal infestation, leaf tannin levels, inter- and intraspecific competition, and spatial position within the tree. Using contingency table analysis and logistic regression, we determined that the most significant factors influencing the success ofD. dubiosus galls are 1) fungal infestation and 2) chalcid hyperparasitism, both having negative effects. Of the factors investigated we found that leaf tannin level had the strongest influence on the degree of fungal infestation. Fungal infestation, in turn, is lowest in regions of high leaf tannins.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号