首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 369 毫秒
1.
Abstract Theoretical models of species' geographic range limits have identified both demographic and evolutionary mechanisms that prevent range expansion. Stable range limits have been paradoxical for evolutionary biologists because they represent locations where populations chronically fail to respond to selection. Distinguishing among the proposed causes of species' range limits requires insight into both current and historical population dynamics. The tools of molecular population genetics provide a window into the stability of range limits, historical demography, and rates of gene flow. Here we evaluate alternative range limit models using a multilocus data set based on DNA sequences and microsatellites along with field demographic data from the annual plant Clarkia xantiana ssp. xantiana. Our data suggest that central and peripheral populations have very large historical and current effective population sizes and that there is little evidence for population size changes or bottlenecks associated with colonization in peripheral populations. Whereas range limit populations appear to have been stable, central populations exhibit a signature of population expansion and have contributed asymmetrically to the genetic diversity of peripheral populations via migration. Overall, our results discount strictly demographic models of range limits and more strongly support evolutionary genetic models of range limits, where adaptation is prevented by a lack of genetic variation or maladaptive gene flow.  相似文献   

2.
All species' ranges are the result of successful past invasions. Thus, models of species' invasions and their failure can provide insight into the formation of a species' geographic range. Here, we study the properties of invasion models when a species cannot persist below a critical population density known as an "Allee threshold." In both spatially continuous reaction-diffusion models and spatially discrete coupled ordinary-differential-equation models, the Allee effect can cause an invasion to fail. In patchy landscapes (with dynamics described by the spatially discrete model), range limits caused by propagation failure (pinning) are stable over a wide range of parameters, whereas, in an uninterrupted habitat (with dynamics described by a spatially continuous model), the zero velocity solution is structurally unstable and thus unlikely to persist in nature. We derive conditions under which invasion waves are pinned in the discrete space model and discuss their implications for spatially complex dynamics, including critical phenomena, in ecological landscapes. Our results suggest caution when interpreting abrupt range limits as stemming either from competition between species or a hard environmental limit that cannot be crossed: under a wide range of plausible ecological conditions, species' ranges may be limited by an Allee effect. Several example systems appear to fit our general model.  相似文献   

3.
Range limits of species are determined by combined effects of physical, historical, ecological, and evolutionary forces. We consider a subset of these factors by using spatial models of competition, hybridization, and local adaptation to examine the effects of partial dispersal barriers on the locations of borders between similar species. Prompted by results from population genetic models and biogeographic observations, we investigate the conditions under which species' borders are attracted to regions of reduced dispersal. For borders maintained by competition or hybridization, we find that dispersal barriers can attract borders whose positions would otherwise be either neutrally stable or moving across space. Borders affected strongly by local adaptation and gene flow, however, are repelled from dispersal barriers. These models illustrate how particular biotic and abiotic factors may combine to limit species' ranges, and they help to elucidate mechanisms by which range limits of many species may coincide.  相似文献   

4.
Castric V  Bernatchez L 《Genetics》2003,163(3):983-996
Geographic patterns of genetic diversity depend on a species' demographic properties in a given habitat, which may change over time. The rates at which patterns of diversity respond to changes in demographic properties and approach equilibrium are therefore pivotal in our understanding of spatial patterns of diversity. The brook charr Salvelinus fontinalis is a coastal fish exhibiting limited marine movements, such that a stable one-dimensional isolation-by-distance (IBD) pattern should be observed over the whole range. Its range, however, recently shifted northward such that northern populations may still be in the process of reaching equilibrium. We investigated variation in IBD patterns, genetic divergence, and allelic richness at six microsatellite markers in 2087 anadromous brook charr from 59 rivers along the most likely postglacial colonization route. We observed a decrease in allelic richness, together with an increase in differentiation and a decrease in IBD in the most recently colonized northern populations, as expected following recent colonization. Contrary to expectation, however, similar patterns were also observed at the southernmost part of the range, despite the fact that these populations are not considered to be newly colonized. We propose that the loss of dispersal capabilities associated with anadromy may have caused the southernmost populations to evolve relatively independently of one another. This study thus demonstrated that changes in a species' geographic range and dispersal capabilities may contribute to shaping geographic patterns of genetic diversity.  相似文献   

5.
Potential causes of species' geographic distribution limits fall into two broad classes: (1) limited adaptation across spatially variable environments and (2) limited opportunities to colonize unoccupied areas. Combining demographic studies, analyses of demographic responses to environmental variation, and species distribution models, we investigated the causes of range limits in a model system, the eastern border of the California annual plant Clarkia xantiana ssp. xantiana. Vital rates of 20 populations varied with growing season temperature and precipitation: fruit number and overwinter survival of 1-year-old seeds declined steeply, while current-year seed germination increased modestly along west-to-east gradients in decreasing temperature, decreasing mean precipitation, and increasing variation in precipitation. Long-term stochastic finite rate of increase, λ(s), exhibited a fourfold range and varied among geologic surface materials as well as with temperature and precipitation. Growth rate declined significantly toward the eastern border, falling below 1 in three of the five easternmost populations. Distribution models employing demographically important environmental variables predicted low habitat favorability beyond the eastern border. Models that filtered or weighted population presences by λ(s) predicted steeper eastward declines in favorability and assigned greater roles in setting the distribution to among-year variation in precipitation and to geologic surface material. These analyses reveal a species border likely set by limited adaptation to declining environmental quality.  相似文献   

6.
Understanding the boundaries of species' ranges and the variations in population dynamics from the centre to margin of a species' range is critical. This study simulated spatial-temporal patterns of birth and death rates and migration across a species' range in different seasons. Our results demonstrated the importance of dispersal and migration in altering birth and death rates, balancing source and sink habitats, and governing expansion or contraction of species' ranges in changing environments. We also showed that the multiple equilibria of metapopulations across a species' range could be easily broken following climatic changes or physical disturbances either local or regional. Although we refer to our models as describing the population dynamics across whole species' range, they should also apply to small-scale habitats (metapopulations) in which species abundance follows a humped pattern or to any ecosystem or landscape where strong central-marginal (C-M) environmental gradients exist. Conservation of both central and marginal populations would therefore be equally important considerations in making management decisions.  相似文献   

7.
Species' borders: a unifying theme in ecology   总被引:6,自引:0,他引:6  
Biologists have long been fascinated by species' borders, and with good reason. Understanding the ecological and evolutionary dynamics of species' borders may prove to be the key that unlocks new understanding across a wide range of biological phenomena. After all, geographic range limits are a point of entry into understanding the ecological niche and threshold responses to environmental change. Elucidating patterns of gene flow to, and returning from, peripheral populations can provide important insights into the nature of adaptation, speciation and coevolution. Species' borders form natural laboratories for the study of the spatial structure of species interactions. Comparative studies from the center to the margin of species' ranges allow us to explore species' demographic responses along gradients of increasing environmental stress. Range dynamics further permit investigation into invasion dynamics and represent bellwethers for a changing climate. This set of papers explores ecological and evolutionary dynamics of species' borders from diverse empirical and theoretical perspectives.  相似文献   

8.
Zapata FA  Gaston KJ  Chown SL 《The American naturalist》2005,166(5):E144-8; discussion E149-54
We revisit the proposition that boundary constraints on species' ranges cause species richness gradients (the mid-domain effect [MDE] hypothesis). In the absence of environmental gradients, species should not retain their observed range sizes as assumed by MDE models. Debate remains regarding the definition of domain limits, valid predictions for testing the models, and their statistical assessment. Empirical support for the MDE is varied but often weak, suggesting that geometric constraints on species' ranges do not provide a general explanation for richness gradients. Criticism of MDE model assumptions does not, however, imply opposition to the use of null models in ecology.  相似文献   

9.
Due to practical difficulties in obtaining direct genetic estimates of effective sizes, conservation biologists have to rely on so-called 'demographic models' which combine life-history and mating-system parameters with F-statistics in order to produce indirect estimates of effective sizes. However, for the same practical reasons that prevent direct genetic estimates, the accuracy of demographic models is difficult to evaluate. Here we use individual-based, genetically explicit computer simulations in order to investigate the accuracy of two such demographic models aimed at investigating the hierarchical structure of populations. We show that, by and large, these models provide good estimates under a wide range of mating systems and dispersal patterns. However, one of the models should be avoided whenever the focal species' breeding system approaches monogamy with no sex bias in dispersal or when a substructure within social groups is suspected because effective sizes may then be strongly overestimated. The timing during the life cycle at which F-statistics are evaluated is also of crucial importance and attention should be paid to it when designing field sampling since different demographic models assume different timings. Our study shows that individual-based, genetically explicit models provide a promising way of evaluating the accuracy of demographic models of effective size and delineate their field of applicability.  相似文献   

10.
Alternative causes for range limits: a metapopulation perspective   总被引:1,自引:1,他引:0  
All species have limited distributions at broad geographical scales. At local scales, the distribution of many species is influenced by the interplay of the three factors of habitat availability, local extinctions and colonization dynamics. We use the standard Levins metapopulation model to illustrate how gradients in these three factors can generate species' range limits. We suggest that the three routes to range limits have radically different evolutionary implications. Because the Levins model makes simplifying assumptions about the spatial coupling of local populations, we present numerical studies of spatially explicit metapopulation models that complement the analytical model. The three routes to range limits give rise to distinct spatiotemporal patterns. Range limits in one species can also arise because of environmental gradients impinging upon other species. We briefly discuss a predator–prey example, which illustrates indirect routes to range limits in a metacommunity context.  相似文献   

11.
Geographical range limits are thought to be set by species' physiological or ecological adaptation to abiotic factors, but the importance of biotic factors such as parasitism in determining range limits has not been well explored. In this study the prevalence of trematode parasitism in populations of a freshwater gastropod snail, Lymnaea stagnalis, increased sharply as this species approached its western UK range limit. The likelihood of trematode infection increased with snail size, but high prevalence at the range edge was not a result of interpopulation variation in snail size. Changes in population growth rates resulting from high rates of parasitism at the range edge could contribute to range limitation. The mechanism driving high rates of parasitism at the range edge is not clear, but changes in abiotic factors towards the range limit may influence snail life history and immune response to trematode infection, indirectly altering the prevalence of parasites in marginal host populations.  相似文献   

12.
Predicted future climate change will alter species' distributions as they attempt to track the most suitable 'climate window'. Climate envelope models indicate the direction of likely range changes but do not incorporate population dynamics, therefore observed responses may differ greatly from these projections. We use simulation modelling to explore the consequences of a period of environmental change for a species structured across an environmental gradient. Results indicate that a species' range may lag behind its climate envelope and demonstrate that the rate of movement of a range can accelerate during a period of climate change. We conclude that the inclusion of both population dynamics and spatial environmental variability is vital to develop models that can both predict, and be used to manage, the impact of changing climate on species' biogeography.  相似文献   

13.
Prior studies of the evolution of species' niches and ranges have identified the importance of within-population genetic variance, migration rate, and environmental heterogeneity in determining evolutionarily stable patterns of species' range and habitat use. Different combinations of these variables can produce either habitat specialists or generalists and cause either stable range limits or unbounded expansion. We examine the effect of density regulation on a species' range and habitat use within a landscape comprised of two discrete habitats and along continuous environmental gradients. Using the theta-logistic formulation, we demonstrate the following. (1) Spatially uniform density regulation generally weakens gene swamping and opposes habitat specialization and range limitation. (2) The form of density regulation should play an important role in determining whether the equilibrium species' range is limited by gene flow. (3) Even when no long-term limited-range equilibrium occurs, quasi-stable (or even contracting) range limits may be maintained for a long period during the initial phases of an invasion; the length of this period depends on the form of density regulation. (4) The steady state invasion speed in heterogeneous environments depends on the form of density regulation. Implications for the study of biological invasions are discussed, and directions for further exploration are sketched.  相似文献   

14.
Evolution of a species' range   总被引:19,自引:0,他引:19  
Gene flow from the center of a species' range can stymie adaptation at the periphery and prevent the range from expanding outward. We study this process using simple models that track both demography and the evolution of a quantitative trait in a population that is continuously distributed in space. Stabilizing selection acts on the trait and favors an optimum phenotype that changes linearly across the habitat. One of three outcomes is possible: the species will become extinct, expand to fill all of the available habitat, or be confined to a limited range in which it is sufficiently adapted to allow population growth. When the environment changes rapidly in space, increased migration inhibits local adaptation and so decreases the species' total population size. Gene flow can cause enough maladaptation that the peripheral half of a species' range acts as a demographic sink. The trait's genetic variance has little effect on species persistence or the size of the range when gene flow is sufficiently strong to keep population densities far below the carrying capacity throughout the range, but it can increase the range width and population size of an abundant species. Under some conditions, a small parameter change can dramatically shift the balance between gene flow and local adaptation, allowing a species with a limited range to suddenly expand to fill all the available habitat.  相似文献   

15.
One of the fundamental dimensions of biodiversity is the rate of species turnover across geographic distance. The Cape Floristic Region of South Africa has exceptionally high geographic species turnover, much of which is associated with groups of closely related species with mostly or completely non-overlapping distributions. A basic unresolved question about biodiversity in this global hotspot is the relative importance of ecological gradients in generating and maintaining high geographic turnover in the region. We used reciprocal transplant experiments to test the extent to which abiotic environmental factors may limit the distributions of a group of closely related species in the genus Protea (Proteaceae), and thus elevate species turnover in this diverse, iconic family. We tested whether these species have a “home site advantage” in demographic rates (germination, growth, mortality), and also parameterized stage-structured demographic models for the species. Two of the three native species were predicted to have a demographic advantage at their home sites. The models also predicted, however, that species could maintain positive population growth rates at sites beyond their current distribution limits. Thus the experiment suggests that abiotic limitation under current environmental conditions does not fully explain the observed distribution limits or resulting biogeographic pattern. One potentially important mechanism is dispersal limitation, which is consistent with estimates based on genetic data and mechanistic dispersal models, though other mechanisms including competition may also play a role. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Enemy free space and the structure of ecological communities   总被引:20,自引:0,他引:20  
We define 'enemy free space' as ways of living that reduce or eliminate a species' vulnerability to one or more species of natural enemies. Many aspects of species' niches, in ecological and evolutionary time have apparently been moulded by interactions with natural enemies for enemy free space. We review a large number of examples. Yet many ecologists continue to think and write as though classical resource based competition for food or space is the primary determinant of species' niches. Often it is not. The recognition that the struggle for enemy free space is an important component of many species' ecologies may have important consequences for studies of community convergence, limits to species packing, and the ratio of predator species to prey species in natural communities.  相似文献   

17.
Rates of tree growth in tropical forests reflect variation in life history strategies, contribute to the determination of species' distributional limits, set limits to timber harvesting and control the carbon balance of the stands. Here, we review the resources that limit tree growth at different temporal and spatial scales, and the different growth rates and responses of functional groups defined on the basis of regeneration strategy, maximum size, and species' associations with particular edaphic and climatic conditions.Variation in soil water availability determines intra- and inter-annual patterns of growth within seasonal forests, whereas irradiance may have a more important role in aseasonal forests. Nutrient supply limits growth rates in montane forests and may determine spatial variation in growth of individual species in lowland forests. However, its role in determining spatial variation in stand-level growth rates is unclear. In terms of growth rate, we propose a functional classification of tropical tree species which contrasts inherently fast-growing, responsive species (pioneer, large-statured species), from slow-growing species that are less responsive to increasing resource availability (shade-bearers, small-statured species). In a semi-deciduous forest in Ghana, pioneers associated with high-rainfall forests with less fertile soils, had significantly lower growth rates than pioneers that are more abundant in low-rainfall forests with more fertile soils. These results match patterns found in seedling trials and suggest for pioneers that species' associations with particular environmental conditions are useful indicators of maximum growth rate.The effects of variation in resource availability and of inherent differences between species on stand-level patterns of growth will not be independent if the functional group composition of tropical forests varies along resource gradients. We find that there is increasing evidence of such spatial shifts at both small and large scales in tropical forests. Quantifying these gradients is important for understanding spatial patterns in forest growth rates.  相似文献   

18.
The ‘centre–periphery hypothesis’ (CPH) is a long‐standing postulate in ecology that states that genetic variation and demographic performance of a species decrease from the centre to the edge of its geographic range. This hypothesis is based on an assumed concordance between geographical peripherality and ecological marginality such that environmental conditions become harsher towards the limits of a species range. In this way, the CPH sets the stage for understanding the causes of distribution limits. To date, no study has examined conjointly the consistency of these postulates. In an extensive literature review we discuss the birth and development of the CPH and provide an assessment of the CPH by reviewing 248 empirical studies in the context of three main themes. First, a decrease in species occurrence towards their range limits was observed in 81% of studies, while only 51% demonstrated reduced abundance of individuals. A decline in genetic variation, increased differentiation among populations and higher rates of inbreeding were demonstrated by roughly one in two studies (47, 45 and 48%, respectively). However, demographic rates, size and population performance less often followed CPH expectations (20–30% of studies). We highlight the impact of important methodological, taxonomic, and biogeographical biases on such validation rates. Second, we found that geographic and ecological marginality gradients are not systematically concordant, which casts doubt on the reliability of a main assumption of the CPH. Finally, we attempt to disentangle the relative contribution of geographical, ecological and historical processes on the spatial distribution of genetic and demographic parameters. While ecological marginality gradients explain variation in species' demographic performance better than geographic gradients, contemporary and historical factors may contribute interactively to spatial patterns of genetic variation. We thereby propose a framework that integrates species' ecological niche characteristics together with current and past range structure to investigate spatial patterns of genetic and demographic variation across species ranges.  相似文献   

19.
Species distribution models (SDMs) use spatial environmental data to make inferences on species' range limits and habitat suitability. Conceptually, these models aim to determine and map components of a species' ecological niche through space and time, and they have become important tools in pure and applied ecology and evolutionary biology. Most approaches are correlative in that they statistically link spatial data to species distribution records. An alternative strategy is to explicitly incorporate the mechanistic links between the functional traits of organisms and their environments into SDMs. Here, we review how the principles of biophysical ecology can be used to link spatial data to the physiological responses and constraints of organisms. This provides a mechanistic view of the fundamental niche which can then be mapped to the landscape to infer range constraints. We show how physiologically based SDMs can be developed for different organisms in different environmental contexts. Mechanistic SDMs have different strengths and weaknesses to correlative approaches, and there are many exciting and unexplored prospects for integrating the two approaches. As physiological knowledge becomes better integrated into SDMs, we will make more robust predictions of range shifts in novel or non-equilibrium contexts such as invasions, translocations, climate change and evolutionary shifts.  相似文献   

20.
Confidence in projections of the future distributions of species requires demonstration that recently-observed changes could have been predicted adequately. Here we use a dynamic model framework to demonstrate that recently-observed changes at the expanding northern boundaries of three British butterfly species can be predicted with good accuracy. Previous work established that the distributions of the study species currently lag behind climate change, and so we presumed that climate is not currently a major constraint at the northern range margins of our study species. We predicted 1970–2000 distribution changes using a colonisation model, MIGRATE, superimposed on a high-resolution map of habitat availability. Thirty-year rates and patterns of distribution change could be accurately predicted for each species (κ goodness-of-fit of models >0.64 for all three species, corresponding to >83% of grid cells correctly assigned), using a combination of individual species traits, species-specific habitat associations and distance-dependent dispersal. Sensitivity analyses showed that population productivity was the most important determinant of the rate of distribution expansion (variation in dispersal rate was not studied because the species are thought to be similar in dispersal capacity), and that each species' distribution prior to expansion was critical in determining the spatial pattern of the current distribution. In future, modelling approaches that combine climate suitability and spatially-explicit population models, incorporating demographic variables and habitat availability, are likely to be valuable tools in projecting species' responses to climatic change and hence in anticipating management to facilitate species' dispersal and persistence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号