首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2386篇
  免费   195篇
  2023年   15篇
  2022年   13篇
  2021年   61篇
  2020年   43篇
  2019年   52篇
  2018年   41篇
  2017年   56篇
  2016年   76篇
  2015年   106篇
  2014年   131篇
  2013年   168篇
  2012年   211篇
  2011年   217篇
  2010年   114篇
  2009年   106篇
  2008年   135篇
  2007年   151篇
  2006年   143篇
  2005年   120篇
  2004年   108篇
  2003年   85篇
  2002年   87篇
  2001年   22篇
  2000年   22篇
  1999年   23篇
  1998年   36篇
  1997年   21篇
  1996年   7篇
  1995年   13篇
  1994年   6篇
  1993年   11篇
  1992年   13篇
  1991年   13篇
  1990年   13篇
  1989年   9篇
  1988年   5篇
  1987年   8篇
  1985年   10篇
  1984年   7篇
  1982年   6篇
  1981年   4篇
  1980年   9篇
  1979年   8篇
  1977年   7篇
  1975年   5篇
  1974年   4篇
  1972年   7篇
  1971年   4篇
  1969年   6篇
  1966年   6篇
排序方式: 共有2581条查询结果,搜索用时 46 毫秒
1.
2.
3.
Despite similarities of cellular membranes in all eukaryotes, every compartment displays characteristic and often unique features which are important for the functions of the specific organelles. In the present study, we biochemically characterized the plasma membrane of the methylotrophic yeast Pichia pastoris with emphasis on the lipids which form the matrix of this compartment. Prerequisite for this effort was the design of a standardized and reliable isolation protocol of the plasma membrane at high purity. Analysis of isolated plasma membrane samples from P. pastoris revealed an increase of phosphatidylserine and a decrease of phosphatidylcholine compared to bulk membranes. The amount of saturated fatty acids in the plasma membrane was higher than in total cell extracts. Ergosterol, the final product of the yeast sterol biosynthetic pathway, was found to be enriched in plasma membrane fractions, although markedly lower than in Saccharomyces cerevisiae. A further characteristic feature of the plasma membrane from P. pastoris was the enrichment of inositol phosphorylceramides over neutral sphingolipids, which accumulated in internal membranes. The detailed analysis of the P. pastoris plasma membrane is discussed in the light of cell biological features of this microorganism especially as a microbial cell factory for heterologous protein production.  相似文献   
4.
Primary Hyperoxaluria Type 1 (PH1) is a rare autosomal recessive kidney stone disease caused by deficiency of the peroxisomal enzyme alanine: glyoxylate aminotransferase (AGT), which is involved in glyoxylate detoxification. Over 75 different missense mutations in AGT have been found associated with PH1. While some of the mutations have been found to affect enzyme activity, stability, and/or localization, approximately half of these mutations are completely uncharacterized. In this study, we sought to systematically characterize AGT missense mutations associated with PH1. To facilitate analysis, we used two high-throughput yeast-based assays: one that assesses AGT specific activity, and one that assesses protein stability. Approximately 30% of PH1-associated missense mutations are found in conjunction with a minor allele polymorphic variant, which can interact to elicit complex effects on protein stability and trafficking. To better understand this allele interaction, we functionally characterized each of 34 mutants on both the major (wild-type) and minor allele backgrounds, identifying mutations that synergize with the minor allele. We classify these mutants into four distinct categories depending on activity/stability results in the different alleles. Twelve mutants were found to display reduced activity in combination with the minor allele, compared with the major allele background. When mapped on the AGT dimer structure, these mutants reveal localized regions of the protein that appear particularly sensitive to interactions with the minor allele variant. While the majority of the deleterious effects on activity in the minor allele can be attributed to synergistic interaction affecting protein stability, we identify one mutation, E274D, that appears to specifically affect activity when in combination with the minor allele.  相似文献   
5.
6.
7.
8.
9.
Particles closely resembling rat high density lipoproteins (HDL) in terms of equilibrium density profile and particle size were prepared by sonication of apoA-I with a microemulsion made with egg lecithin and cholesterol oleate. These particles, like authentic HDL, allowed selective uptake of their cholesterol ester moieties by cultured cells without parallel uptake of the particle itself. That uptake was saturable and competed by HDL. In rats, the plasma decay kinetics and sites of uptake of a cholesteryl ether tracer were similar whether that tracer was incorporated into synthetic or authentic HDL. Synthetic particles containing other apoproteins were made by generally the same method, but using in place of apoA-I either a mixture of rat apoCs or apoE that was either competent or reductively methylated to prevent interaction with the B/E receptor. These particles, of lower density and larger Stokes radius than those made with apoA-I, also allowed selective uptake of cholesterol esters, albeit with a lower degree of selectivity than in the case of apoA-I. Thus a specific apoprotein component in the subject lipoprotein particle is not required for selective uptake. However, selective uptake was shown to be a function of particle density or size, and part of the difference in rates of selective uptake from the particles made with various apoproteins was explained by their differences in density or size.  相似文献   
10.
We have previously described in rats the selective uptake of HDL-associated cholesterol esters (traced by [3H]cholesteryl oleyl ether) in excess of the uptake of HDL-associated apoA-I. In the present studies we show that the mechanism also exists in cultured cells of human and mouse origin as well. This selective uptake represents a net uptake of cholesterol esters and not an isotope exchange, as shown by mass flux studies in adrenal cells. Inhibitors of receptor recycling, chloroquine, monensin, and colchicine, inhibited uptake of apoA-I from HDL by Hep G-2 human hepatoma cells to about the same extent as a reference protein, asialofetuin, but inhibited uptake of the cholesteryl ether tracer much less. Levels of NaN3 which effectively inhibited sucrose pinocytosis inhibited uptake of apoA-I to about the same extent but did not inhibit uptake of the cholesteryl ether at all. Thus, not only receptor recycling, but endocytosis as well, appears not to be involved in selective uptake. This conclusion was supported by studies in which synthetic HDL particles were made to contain two neutral lipid core tracers; one of them, the [3H]cholesteryl ether previously used, was selectively taken up, whereas the other, [14C]sucrose octaoleate, was excluded from selective uptake. Thus, selective uptake cannot involve endocytosis of the entire lipid core, but may involve other specific transfer mechanisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号