首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   167篇
  免费   14篇
  2023年   3篇
  2022年   4篇
  2021年   8篇
  2020年   2篇
  2019年   5篇
  2018年   6篇
  2017年   4篇
  2016年   10篇
  2015年   12篇
  2014年   15篇
  2013年   18篇
  2012年   23篇
  2011年   6篇
  2010年   9篇
  2009年   5篇
  2008年   6篇
  2007年   12篇
  2006年   13篇
  2005年   2篇
  2004年   7篇
  2003年   4篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
排序方式: 共有181条查询结果,搜索用时 46 毫秒
1.
Acinetobacter baumannii causes several nosocomial infections and poses major threat when it is multidrug resistant. Even pan drug-resistant strains have been reported in some countries. The intensive care unit (ICU) mortality rate ranged from 45.6% to 60.9% and it is as high as 84.3% when ventilator-associated pneumonia was caused by XDR (extensively drug resistant) A. baumannii. Acinetobacter baumannii constituted 9.4% of all Gram-negative organisms throughout the hospital and 22.6% in the ICUs according to a study carried out in an Indian hospital. One of the major factors contributing to drug resistance in A. baumannii infections is biofilm development. Quorum sensing (QS) facilitates biofilm formation and therefore the search for ‘quorum quenchers’ has increased recently. Such compounds are expected to inhibit biofilm formation and hence reduce/prevent development of drug resistance in the bacteria. Some of these compounds also target synthesis of some virulence factors (VF). Several candidate drugs have been identified and are at various stages of drug development. Since quorum quenching, inhibition of biofilm formation and inhibition of VF synthesis do not pose any threat to the DNA replication and cell division of the bacteria, chances of resistance development to such compounds is presumably rare. Thus, these compounds ideally qualify as adjunct therapeutics and could be administered along with an antibiotic to reduce chances of resistance development and also to increase the effectiveness of antimicrobial therapy. This review describes the state-of-art in QS process in Gram-negative bacteria in general and in A. baumannii in particular. This article elaborates the nature of QS mediators, their characteristics, and the methods for their detection and quantification. Various potential sites in the QS pathway have been highlighted as drug targets and the candidate quorum quenchers which inhibit the mediator’s synthesis or function are enlisted.  相似文献   
2.
3.

Background

The effects of microchannel diameter in hydroxyapatite (HAp) substrates on osteoblast behavior were investigated in this study. Microchannels of 100, 250 and 500 μm diameter were created on hydroxyapatite disks. The changes in osteoblast precursor growth, differentiation, extra cellular matrix (ECM) secretion and cell attachment/orientation were investigated as a function of microchannel diameter.

Results

Curvature did not impact cellular differentiation, however organized cellular orientation was achieved within the 100 and 250 μm microchannels (mc) after 6 days compared to the 12 days it took for the 500mc group, while the flat substrate remained disorganized. Moreover, the 100, 250 and 500mc groups expressed a specific shift in orientation of 17.45°, 9.05°, and 22.86° respectively in 24 days. The secreted/mineralized ECM showed the 100 and 250mc groups to have higher modulus (E) and hardness (h) (E?=?42.6GPa; h?=?1.6GPa) than human bone (E?=?13.4-25.7GPa; h?=?0.47-0.74GPa), which was significantly greater than the 500mc and control groups (p?<?0.05). It was determined that substrate curvature affects the cell orientation, the time required for initial response, and the shift in orientation with time.

Conclusions

These findings demonstrate the ability of osteoblasts to organize and mineralize differentially in microchannels similar to those found in the osteons of compact bone. These investigations could lead to the development of osteon-like scaffolds to support the regeneration of organized bone.
  相似文献   
4.
Cyanobacterial circadian clock composed of the Kai oscillator has been unraveled in the model strain Synechococcus elongatus PCC 7942. Recent studies with nitrogen-fixing Cyanothece sp. ATCC 51142 show rhythmic oscillations in the cellular program even in continuous light albeit with a cycle time of ~11 h. In the present study, we investigate correlation between cellular rhythms, KaiC1 phosphorylation cycle, ATP/ADP ratio, and the redox state of plastoquinone pool in Cyanothece. KaiC1 phosphorylation cycle of Cyanothece was similar to that of Synechococcus under diurnal cycles. However, under continuous light, the cycle time was shorter (11 h), in agreement with physiological and gene expression studies. Interestingly, the ATP/ADP ratio also oscillates with an 11 h period, peaking concomitantly with the respiratory burst. We propose a mathematical model with C/N ratio as a probable signal regulating the clock in continuous light and emphasize the existence of a single timing mechanism regardless of the cycle time.  相似文献   
5.
6.
Clonogenic assay is a widely used experimental approach to test for the effects of drugs/genes on the growth and proliferative characteristics of cells in vitro. Accurate quantitation of treatment effects in clonogeneic assays depends on the ability to visualize and count cell colonies precisely. We report a novel method (referred as ETeB) for staining cell colonies grown on plastic and specially coated substrates like collagen. Using colon cancer cell lines grown on plastic and collagen, we compared the colony staining efficiencies of the widely used methylene blue, and Ethidium bromide (ETeB) stains. Results show that the ETeB protocol works well on plastic and is extremely effective for staining colonies on collagen when compared to methylene blue. The key features and advantages of ETeB technique are; (a) reduction in background for colonies grown on collagen and possibly other substrates, (b) the whole procedure takes less than a minute, (c) no post-stain washing step is required which eliminates colony losses for cell lines that are loosely adherent, (d) colony visualization and counting can be done immediately following the staining procedure using a standard UV illuminator and software, and (e) the method works across a wide variety of cell lines. The simplicity and robustness of this procedure should warrant its usage in both small and large-scale clonogenic experiments.
Kishore GudaEmail:
  相似文献   
7.
Neurochemical Research - Tetrahydrobiopterin (BH4) is a multifunctional co-factor of various enzymes and a substantial amount of studies have shown BH4 as a key regulator in the synthesis of...  相似文献   
8.
Melioidosis is a tropical bacterial infection caused by Burkholderia pseudomallei (B. pseudomallei; Bpm), a Gram-negative bacterium. Current therapeutic options are largely limited to trimethoprim-sulfamethoxazole and β-lactam drugs, and the treatment duration is about 4 months. Moreover, resistance has been reported to these drugs. Hence, there is a pressing need to develop new antibiotics for Melioidosis. Inhibition of enoyl-ACP reducatase (FabI), a key enzyme in the fatty acid biosynthesis pathway has shown significant promise for antibacterial drug development. FabI has been identified as the major enoyl-ACP reductase present in B. pseudomallei. In this study, we evaluated AFN-1252, a Staphylococcus aureus FabI inhibitor currently in clinical development, for its potential to bind to BpmFabI enzyme and inhibit B. pseudomallei bacterial growth. AFN-1252 stabilized BpmFabI and inhibited the enzyme activity with an IC50 of 9.6 nM. It showed good antibacterial activity against B. pseudomallei R15 strain, isolated from a melioidosis patient (MIC of 2.35 mg/L). X-ray structure of BpmFabI with AFN-1252 was determined at a resolution of 2.3 Å. Complex of BpmFabI with AFN-1252 formed a symmetrical tetrameric structure with one molecule of AFN-1252 bound to each monomeric subunit. The kinetic and thermal melting studies supported the finding that AFN-1252 can bind to BpmFabI independent of cofactor. The structural and mechanistic insights from these studies might help the rational design and development of new FabI inhibitors.  相似文献   
9.
Synechocystis sp. PCC6803 exhibited a high degree of variation in biomass and lipid production rates in response to temperature changes in a photobioreactor. Compared with an optimal temperature of 30-33°C, a higher temperature of 44°C and lower temperatures of 22°C and 18°C severely inhibited the specific growth rate (up to a 66% decrease), biomass production rate (up to a 71% decrease), nutrient utilization rates (up to a 77% decrease), and lipid production rate (up to a 80% decrease). Temperature stress triggered changes in the relative percentage of individual fatty acids (mainly for C16:0 and C18:3), and degree of unsaturation significantly changed: 0.87 at 30°C, 0.62 at 44°C, and 1.29 at 18°C. Although PCC6803 survived temperature stress and maintained its predominate position in the culture, it could not fully recover from long-term temperature stress. Thus, avoiding prolonged exposure to extreme temperature is crucial for using PCC6803 as feedstock for biofuel production.  相似文献   
10.
We present a method to control protein levels under native genetic regulation in Caenorhabditis elegans by using synthetic genes with adapted codons. We found that the force acting on the spindle in C. elegans embryos was related to the amount of the G-protein regulator GPR-1/2. Codon-adapted versions of any C. elegans gene can be designed using our web tool, C. elegans codon adapter.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号