首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   1篇
  2017年   1篇
  2015年   1篇
  2012年   2篇
  2011年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  1999年   1篇
  1998年   2篇
排序方式: 共有16条查询结果,搜索用时 218 毫秒
1.
PGRP-S (Tag7) is an innate immunity protein involved in the antimicrobial defense systems, both in insects and in mammals. We have previously shown that Tag7 specifically interacts with several proteins, including Hsp70 and the calcium binding protein S100A4 (Mts1), providing a number of novel cellular functions. Here we show that Tag7–Mts1 complex causes chemotactic migration of lymphocytes, with NK cells being a preferred target. Cells of either innate immunity (neutrophils and monocytes) or acquired immunity (CD4+ and CD8+ lymphocytes) can produce this complex, which confirms the close connection between components of the 2 branches of immune response.  相似文献   
2.
Protein function prediction is very important in establishing the roles of various proteins in bacteria; however, some proteins in the E. coli genome have their function assigned based on low percent sequence homology that does not provide reliable assignments. We have made an attempt to verify the prediction that E. coli genes ygiC and yjfC encode proteins with the same function as glutathionylspermidine synthetase/amidase (GspSA). GspSA is a bifunctional enzyme that catalyzes the ATP-dependent formation and hydrolysis of glutathionylspermidine (G-Sp), a conjugate of glutathione (GSH) and spermidine. YgiC and YjfC proteins show 51% identity between themselves and 28% identity to the synthetase domain of the GspSA enzyme. YgiC and YjfC proteins were expressed and purified, and the properties of GspSA, YgiC, and YjfC were compared. In contrast to GspSA, proteins YgiC and YjfC did not bind to G-Sp immobilized on the affinity matrix. We demonstrated that all three proteins (GspSA, YgiC and YjfC) catalyze the hydrolysis of ATP; however, YgiC and YjfC cannot synthesize G-Sp, GSH, or GSH intermediates. gsp, ygiC, and yjfC genes were eliminated from the E. coli genome to test the ability of mutant strains to synthesize G-Sp conjugate. E. coli cells deficient in GspSA do not produce G-Sp while synthesis of the conjugate is not affected in ΔygiC and ΔyjfC mutants. All together our results indicate that YgiC and YjfC are not glutathionylspermidine synthetases as predicted from the amino acid sequence analysis.  相似文献   
3.
4.
5.
We present an efficient computational architecture designed using supervised machine learning model to predict amyloid fibril forming protein segments, named AmylPepPred. The proposed prediction model is based on bio-physio-chemical properties of primary sequences and auto-correlation function of their amino acid indices. AmylPepPred provides a user friendly web interface for the researchers to easily observe the fibril forming and non-fibril forming hexmers in a given protein sequence. We expect that this stratagem will be highly encouraging in discovering fibril forming regions in proteins thereby benefit in finding therapeutic agents that specifically aim these sequences for the inhibition and cure of amyloid illnesses.

Availability

AmylPepPred is available freely for academic use at www.zoommicro.in/amylpeppred  相似文献   
6.
7.
The glutathione (GSH)-dependent dichloromethane dehalogenase from Methylophilus sp. strain DM11 catalyzes the dechlorination of CH(2)Cl(2) to formaldehyde via a highly reactive, genotoxic intermediate, S-(chloromethyl)glutathione (GS-CH(2)Cl). The catalytic mechanism of the enzyme toward a series of dihalomethane and monohaloethane substrates suggests that the initial addition of GSH to the alkylhalides is fast and that the rate-limiting step in turnover is the release of either the peptide product or formaldehyde. With the exception of CH(2)ClF, which forms a relatively stable GS-CH(2)F intermediate, the turnover numbers for a series of dihalomethanes fall in a very narrow range (1-3 s(-1)). The pre-steady-state kinetics of the DM11-catalyzed addition of GSH to CH(3)CH(2)Br exhibits a burst of S-(ethyl)-glutathione (k(b) = 96 +/- 56 s(-1)) followed by a steady state with k(cat) = 0.13 +/- 0.01 s(-1). The turnover numbers for CH(3)CH(2)Cl, CH(3)CH(2)Br, and CH(3)CH(2)I are identical, indicating a common rate-limiting step. The turnover numbers of the enzyme with CH(3)CH(2)Br and CH(3)CH(2)I are dependent on viscosity and are very close to the measured off-rate of GSEt. The turnover number with CH(2)I(2) is also dependent on viscosity, suggesting that a diffusive step is rate-limiting with dihaloalkanes as well. The rate constants for solvolysis of CH(3)SCH(2)Cl, a model for GS-CH(2)Cl, range between 1 s(-1) (1:1 dioxane/water) and 64 s(-1) (1:10 dioxane/water). Solvolysis of the S-(halomethyl)glutathione intermediates may also occur in the active site of the enzyme preventing the release of the genotoxic species. Together, the results indicate that dissociation of the GS-CH(2)X or GS-CH(2)OH intermediates from the enzyme may be a relatively rare event.  相似文献   
8.
The crystal structure (1.50 ? resolution) and biochemical properties of the GSH transferase homologue, YghU, from Escherichia coli reveal that the protein is unusual in that it binds two molecules of GSH in each active site. The crystallographic observation is consistent with biphasic equilibrium binding data that indicate one tight (K(d1) = 0.07 ± 0.03 mM) and one weak (K(d2) = 1.3 ± 0.2 mM) binding site for GSH. YghU exhibits little or no GSH transferase activity with most typical electrophilic substrates but does possess a modest catalytic activity toward several organic hydroperoxides. Most notably, the enzyme also exhibits disulfide-bond reductase activity toward 2-hydroxyethyl disulfide [k(cat) = 74 ± 6 s(-1), and k(cat)/K(M)(GSH) = (6.6 ± 1.3) × 10(4) M(-1) s(-1)] that is comparable to that previously determined for YfcG. A superposition of the structures of the YghU·2GSH and YfcG·GSSG complexes reveals a remarkable structural similarity of the active sites and the 2GSH and GSSG molecules in each. We conclude that the two structures represent reduced and oxidized forms of GSH-dependent disulfide-bond oxidoreductases that are distantly related to glutaredoxin 2. The structures and properties of YghU and YfcG indicate that they are members of the same, but previously unidentified, subfamily of GSH transferase homologues, which we suggest be called the nu-class GSH transferases.  相似文献   
9.
Cyclooxygenases (COXs) catalyze the rate-limiting step in the production of prostaglandins, bioactive compounds involved in processes such as fever and sensitivity to pain, and are the target of aspirin-like drugs. COX genes have been cloned from coral, tunicates and vertebrates, and in all the phyla where they are found, there are two genes encoding two COX isoenzymes; it is unclear whether these genes arose from an early single duplication event or from multiple independent duplications in evolution. The intron-exon arrangement of COX genes is completely conserved in vertebrates and mostly conserved in all species. Exon boundaries largely define the four functional domains of the encoded protein: the amino-terminal hydrophobic signal peptide, the dimerization domain, the membrane-binding domain, and the catalytic domain. The catalytic domain of each enzyme contains distinct peroxidase and cyclooxygenase active sites; COXs are classified as members of the myeloperoxidase family. All COXs are homodimers and monotopic membrane proteins (inserted into only one leaflet of the membrane), and they appear to be targeted to the lumenal membrane of the endoplasmic reticulum, where they are N-glycosylated. In mammals, the two COX genes encode a constitutive isoenzyme (COX-1) and an inducible isoenzyme (COX-2); both are of significant pharmacological importance.  相似文献   
10.
We report a case of implantation of a new design of stent which allows creation of a double-hemispheric lumen for the treatment of a bifurcational stenosis. The unfavourable outcome following the implantation of this stent is described.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号