首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   2篇
  2022年   1篇
  2021年   5篇
  2020年   4篇
  2019年   1篇
  2017年   1篇
  2016年   3篇
  2015年   3篇
  2014年   1篇
  2013年   6篇
  2012年   15篇
  2011年   10篇
  2010年   5篇
  2009年   3篇
  2008年   3篇
  2007年   5篇
  2006年   4篇
  2005年   3篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1997年   1篇
  1992年   1篇
  1988年   1篇
  1977年   1篇
排序方式: 共有83条查询结果,搜索用时 15 毫秒
1.
2.
The third Heidelberg Unseminars in Bioinformatics (HUB) was held on 18th October 2012, at Heidelberg University, Germany. HUB brought together around 40 bioinformaticians from academia and industry to discuss the ‘Biggest Challenges in Bioinformatics’ in a ‘World Café’ style event.  相似文献   
3.

Background

Lifestyle risk behaviors are responsible for a large proportion of disease burden worldwide. Behavioral risk factors, such as smoking, poor diet, and physical inactivity, tend to cluster within populations and may have synergistic effects on health. As evidence continues to accumulate on emerging lifestyle risk factors, such as prolonged sitting and unhealthy sleep patterns, incorporating these new risk factors will provide clinically relevant information on combinations of lifestyle risk factors.

Methods and Findings

Using data from a large Australian cohort of middle-aged and older adults, this is the first study to our knowledge to examine a lifestyle risk index incorporating sedentary behavior and sleep in relation to all-cause mortality. Baseline data (February 2006– April 2009) were linked to mortality registration data until June 15, 2014. Smoking, high alcohol intake, poor diet, physical inactivity, prolonged sitting, and unhealthy (short/long) sleep duration were measured by questionnaires and summed into an index score. Cox proportional hazards analysis was used with the index score and each unique risk combination as exposure variables, adjusted for socio-demographic characteristics.During 6 y of follow-up of 231,048 participants for 1,409,591 person-years, 15,635 deaths were registered. Of all participants, 31.2%, 36.9%, 21.4%, and 10.6% reported 0, 1, 2, and 3+ risk factors, respectively. There was a strong relationship between the lifestyle risk index score and all-cause mortality. The index score had good predictive validity (c index = 0.763), and the partial population attributable risk was 31.3%. Out of all 96 possible risk combinations, the 30 most commonly occurring combinations accounted for more than 90% of the participants. Among those, combinations involving physical inactivity, prolonged sitting, and/or long sleep duration and combinations involving smoking and high alcohol intake had the strongest associations with all-cause mortality. Limitations of the study include self-reported and under-specified measures, dichotomized risk scores, lack of long-term patterns of lifestyle behaviors, and lack of cause-specific mortality data.

Conclusions

Adherence to healthy lifestyle behaviors could reduce the risk for death from all causes. Specific combinations of lifestyle risk behaviors may be more harmful than others, suggesting synergistic relationships among risk factors.  相似文献   
4.
Many of the steps in phylogenetic reconstruction can be confounded by “rogue” taxa—taxa that cannot be placed with assurance anywhere within the tree, indeed, whose location within the tree varies with almost any choice of algorithm or parameters. Phylogenetic consensus methods, in particular, are known to suffer from this problem. In this paper, we provide a novel framework to define and identify rogue taxa. In this framework, we formulate a bicriterion optimization problem, the relative information criterion, that models the net increase in useful information present in the consensus tree when certain taxa are removed from the input data. We also provide an effective greedy heuristic to identify a subset of rogue taxa and use this heuristic in a series of experiments, with both pathological examples from the literature and a collection of large biological data sets. As the presence of rogue taxa in a set of bootstrap replicates can lead to deceivingly poor support values, we propose a procedure to recompute support values in light of the rogue taxa identified by our algorithm; applying this procedure to our biological data sets caused a large number of edges to move from “unsupported” to “supported” status, indicating that many existing phylogenies should be recomputed and reevaluated to reduce any inaccuracies introduced by rogue taxa. We also discuss the implementation issues encountered while integrating our algorithm into RAxML v7.2.7, particularly those dealing with scaling up the analyses. This integration enables practitioners to benefit from our algorithm in the analysis of very large data sets (up to 2,500 taxa and 10,000 trees, although we present the results of even larger analyses).  相似文献   
5.
MOTIVATION: The computation of large phylogenetic trees with statistical models such as maximum likelihood or bayesian inference is computationally extremely intensive. It has repeatedly been demonstrated that these models are able to recover the true tree or a tree which is topologically closer to the true tree more frequently than less elaborate methods such as parsimony or neighbor joining. Due to the combinatorial and computational complexity the size of trees which can be computed on a Biologist's PC workstation within reasonable time is limited to trees containing approximately 100 taxa. RESULTS: In this paper we present the latest release of our program RAxML-III for rapid maximum likelihood-based inference of large evolutionary trees which allows for computation of 1.000-taxon trees in less than 24 hours on a single PC processor. We compare RAxML-III to the currently fastest implementations for maximum likelihood and bayesian inference: PHYML and MrBayes. Whereas RAxML-III performs worse than PHYML and MrBayes on synthetic data it clearly outperforms both programs on all real data alignments used in terms of speed and final likelihood values. Availability SUPPLEMENTARY INFORMATION: RAxML-III including all alignments and final trees mentioned in this paper is freely available as open source code at http://wwwbode.cs.tum/~stamatak CONTACT: stamatak@cs.tum.edu.  相似文献   
6.
We have developed a unified format for phylogenetic placements, that is, mappings of environmental sequence data (e.g., short reads) into a phylogenetic tree. We are motivated to do so by the growing number of tools for computing and post-processing phylogenetic placements, and the lack of an established standard for storing them. The format is lightweight, versatile, extensible, and is based on the JSON format, which can be parsed by most modern programming languages. Our format is already implemented in several tools for computing and post-processing parsimony- and likelihood-based phylogenetic placements and has worked well in practice. We believe that establishing a standard format for analyzing read placements at this early stage will lead to a more efficient development of powerful and portable post-analysis tools for the growing applications of phylogenetic placement.  相似文献   
7.
8.
At room temperature, the chlorophyll (Chl) a fluorescence induction (FI) kinetics of plants, algae and cyanobacteria go through two maxima, P at ∼ 0.2-1 and M at ∼ 100-500 s, with a minimum S at ∼ 2-10 s in between. Thus, the whole FI kinetic pattern comprises a fast OPS transient (with O denoting origin) and a slower SMT transient (with T denoting terminal state). Here, we examined the phenomenology and the etiology of the SMT transient of the phycobilisome (PBS)-containing cyanobacterium Synechococcus sp PCC 7942 by modifying PBS → Photosystem (PS) II excitation transfer indirectly, either by blocking or by maximizing the PBS → PS I excitation transfer. Blocking the PBS → PS I excitation transfer route with N-ethyl-maleimide [NEM; A. N. Glazer, Y. Gindt, C. F. Chan, and K.Sauer, Photosynth. Research 40 (1994) 167-173] increases both the PBS excitation share of PS II and Chl a fluorescence. Maximizing it, on the other hand, by suspending cyanobactrial cells in hyper-osmotic media [G. C. Papageorgiou, A. Alygizaki-Zorba, Biochim. Biophys. Acta 1335 (1997) 1-4] diminishes both the PBS excitation share of PS II and Chl a fluorescence. Here, we show for the first time that, in either case, the slow SMT transient of FI disappears and is replaced by continuous P → T fluorescence decay, reminiscent of the typical P → T fluorescence decay of higher plants and algae. A similar P → T decay was also displayed by DCMU-treated Synechococcus cells at 2 °C. To interpret this phenomenology, we assume that after dark adaptation cyanobacteria exist in a low fluorescence state (state 2) and transit to a high fluorescence state (state 1) when, upon light acclimation, PS I is forced to run faster than PS II. In these organisms, a state 2 → 1 fluorescence increase plus electron transport-dependent dequenching processes dominate the SM rise and maximal fluorescence output is at M which lies above the P maximum of the fast FI transient. In contrast, dark-adapted plants and algae exist in state 1 and upon illumination they display an extended P → T decay that sometimes is interrupted by a shallow SMT transient, with M below P. This decay is dominated by a state 1 → 2 fluorescence lowering, as well as by electron transport-dependent quenching processes. When the regulation of the PBS → PS I electronic excitation transfer is eliminated (as for example in hyper-osmotic suspensions, after NEM treatment and at low temperature), the FI pattern of Synechococcus becomes plant-like.  相似文献   
9.
10.
At room temperature, the chlorophyll (Chl) a fluorescence induction (FI) kinetics of plants, algae and cyanobacteria go through two maxima, P at approximately 0.2-1 and M at approximately 100-500 s, with a minimum S at approximately 2-10 s in between. Thus, the whole FI kinetic pattern comprises a fast OPS transient (with O denoting origin) and a slower SMT transient (with T denoting terminal state). Here, we examined the phenomenology and the etiology of the SMT transient of the phycobilisome (PBS)-containing cyanobacterium Synechococcus sp PCC 7942 by modifying PBS-->Photosystem (PS) II excitation transfer indirectly, either by blocking or by maximizing the PBS-->PS I excitation transfer. Blocking the PBS-->PS I excitation transfer route with N-ethyl-maleimide [NEM; A. N. Glazer, Y. Gindt, C. F. Chan, and K.Sauer, Photosynth. Research 40 (1994) 167-173] increases both the PBS excitation share of PS II and Chl a fluorescence. Maximizing it, on the other hand, by suspending cyanobacterial cells in hyper-osmotic media [G. C. Papageorgiou, A. Alygizaki-Zorba, Biochim. Biophys. Acta 1335 (1997) 1-4] diminishes both the PBS excitation share of PS II and Chl a fluorescence. Here, we show for the first time that, in either case, the slow SMT transient of FI disappears and is replaced by continuous P-->T fluorescence decay, reminiscent of the typical P-->T fluorescence decay of higher plants and algae. A similar P-->T decay was also displayed by DCMU-treated Synechococcus cells at 2 degrees C. To interpret this phenomenology, we assume that after dark adaptation cyanobacteria exist in a low fluorescence state (state 2) and transit to a high fluorescence state (state 1) when, upon light acclimation, PS I is forced to run faster than PS II. In these organisms, a state 2-->1 fluorescence increase plus electron transport-dependent dequenching processes dominate the SM rise and maximal fluorescence output is at M which lies above the P maximum of the fast FI transient. In contrast, dark-adapted plants and algae exist in state 1 and upon illumination they display an extended P-->T decay that sometimes is interrupted by a shallow SMT transient, with M below P. This decay is dominated by a state 1-->2 fluorescence lowering, as well as by electron transport-dependent quenching processes. When the regulation of the PBS-->PS I electronic excitation transfer is eliminated (as for example in hyper-osmotic suspensions, after NEM treatment and at low temperature), the FI pattern of Synechococcus becomes plant-like.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号