首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   230篇
  免费   27篇
  国内免费   1篇
  2023年   1篇
  2021年   3篇
  2020年   3篇
  2019年   1篇
  2018年   6篇
  2017年   1篇
  2016年   10篇
  2015年   16篇
  2014年   13篇
  2013年   13篇
  2012年   20篇
  2011年   17篇
  2010年   4篇
  2009年   15篇
  2008年   11篇
  2007年   9篇
  2006年   10篇
  2005年   11篇
  2004年   9篇
  2003年   5篇
  2002年   5篇
  2001年   8篇
  2000年   7篇
  1999年   6篇
  1998年   8篇
  1997年   2篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   6篇
  1991年   3篇
  1990年   2篇
  1989年   4篇
  1988年   1篇
  1987年   2篇
  1986年   3篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1978年   3篇
  1977年   4篇
  1973年   1篇
排序方式: 共有258条查询结果,搜索用时 671 毫秒
1.
Phosphorylation of ankyrin decreases its affinity for spectrin tetramer   总被引:5,自引:0,他引:5  
The effects of phosphorylation on the interaction between spectrin and ankyrin were investigated. Spectrin and ankyrin were phosphorylated using purified human erythrocyte membrane and cytosolic (casein kinase A) kinases. These two kinases have similar properties as well as activities toward spectrin and ankyrin. Both kinases catalyzed the incorporation of about 2 mol of phosphate/mol of spectrin and about 7 mol of phosphate/mol of ankyrin. These phosphates were incorporated primarily into seryl and threonyl residues of the proteins. The phosphopeptide maps of ankyrin phosphorylated by the membrane kinase and casein kinase A were identical. Binding studies indicate that ankyrin exhibits different affinities for spectrin dimers (KD = 2.5 +/- 0.9 X 10(-6) M) and tetramers (KD = 2.7 +/- 0.8 X 10(-7) M). These dissociation constants were not appreciably affected by the phosphorylation of spectrin. On the other hand, phosphorylation of ankyrin was found to significantly reduce its affinity for either phosphorylated or unphosphorylated spectrin tetramers (KD = 1.2 +/- 0.1 X 10(-6) M) but not spectrin dimers (KD = 2.5 +/- 0.4 X 10(-6) M). The same results were obtained using either the membrane kinase or casein kinase A as the phosphorylating enzyme. The above observation suggests that ankyrin phosphorylation may provide an important mechanism for the regulation of the erythrocyte membrane cytoskeletal network.  相似文献   
2.
3.
Transplantation of human embryonic stem cells (hESC) into immune-deficient mice leads to the formation of differentiated tumors comprising all three germ layers, resembling spontaneous human teratomas. Teratoma assays are considered the gold standard for demonstrating differentiation potential of pluripotent hESC and hold promise as a standard for assessing safety among hESC-derived cell populations intended for therapeutic applications. We tested the potency of teratoma formation in seven anatomical transplantation locations (kidney capsule, muscle, subcutaneous space, peritoneal cavity, testis, liver, epididymal fat pad) in SCID mice with and without addition of Matrigel, and found that intramuscular teratoma formation was the most experimentally convenient, reproducible, and quantifiable. In the same experimental setting, we compared undifferentiated hESC and differentiated populations enriched for either beating cardiomyocytes or definitive endoderm derivatives (insulin-secreting beta cells), and showed that all cell preparations rapidly formed teratomas with varying percentages of mesoderm, ectoderm, and endoderm. In limiting dilution experiments, we found that as little as two hESC colonies spiked into feeder fibroblasts produced a teratoma, while a more rigorous single-cell titration achieved a detection limit of 1/4000. In summary, we established core parameters essential for facilitating safety profiling of hESC-derived products for future therapeutic applications.  相似文献   
4.
Numerous studies have demonstrated that fertilization with nutrients such as nitrogen, phosphorus, and potassium increases plant productivity in both natural and managed ecosystems, demonstrating that primary productivity is nutrient limited in most terrestrial ecosystems. In contrast, it has been demonstrated that heterotrophic microbial communities in soil are primarily limited by organic carbon or energy. While this concept of contrasting limitations, that is, microbial carbon and plant nutrient limitation, is based on strong evidence that we review in this paper, it is often ignored in discussions of ecosystem response to global environment changes. The plant‐centric perspective has equated plant nutrient limitations with those of whole ecosystems, thereby ignoring the important role of the heterotrophs responsible for soil decomposition in driving ecosystem carbon storage. To truly integrate carbon and nutrient cycles in ecosystem science, we must account for the fact that while plant productivity may be nutrient limited, the secondary productivity by heterotrophic communities is inherently carbon limited. Ecosystem carbon cycling integrates the independent physiological responses of its individual components, as well as tightly coupled exchanges between autotrophs and heterotrophs. To the extent that the interacting autotrophic and heterotrophic processes are controlled by organisms that are limited by nutrient versus carbon accessibility, respectively, we propose that ecosystems by definition cannot be ‘limited’ by nutrients or carbon alone. Here, we outline how models aimed at predicting non‐steady state ecosystem responses over time can benefit from dissecting ecosystems into the organismal components and their inherent limitations to better represent plant–microbe interactions in coupled carbon and nutrient models.  相似文献   
5.
Microsomal cytochrome b5 (cytb5) is a membrane-bound protein that modulates the catalytic activity of its redox partner, cytochrome P4502B4 (cytP450). Here, we report the first structure of full-length rabbit ferric microsomal cytb5 (16 kDa), incorporated in two different membrane mimetics (detergent micelles and lipid bicelles). Differential line broadening of the cytb5 NMR resonances and site-directed mutagenesis data were used to characterize the cytb5 interaction epitope recognized by ferric microsomal cytP450 (56 kDa). Subsequently, a data-driven docking algorithm, HADDOCK (high ambiguity driven biomolecular docking), was used to generate the structure of the complex between cytP4502B4 and cytb5 using experimentally derived restraints from NMR, mutagenesis, and the double mutant cycle data obtained on the full-length proteins. Our docking and experimental results point to the formation of a dynamic electron transfer complex between the acidic convex surface of cytb5 and the concave basic proximal surface of cytP4502B4. The majority of the binding energy for the complex is provided by interactions between residues on the C-helix and β-bulge of cytP450 and residues at the end of helix α4 of cytb5. The structure of the complex allows us to propose an interprotein electron transfer pathway involving the highly conserved Arg-125 on cytP450 serving as a salt bridge between the heme propionates of cytP450 and cytb5. We have also shown that the addition of a substrate to cytP450 likely strengthens the cytb5-cytP450 interaction. This study paves the way to obtaining valuable structural, functional, and dynamic information on membrane-bound complexes.  相似文献   
6.
Whole-genome sequencing across multiple samples in a population provides an unprecedented opportunity for comprehensively characterizing the polymorphic variants in the population. Although the 1000 Genomes Project (1KGP) has offered brief insights into the value of population-level sequencing, the low coverage has compromised the ability to confidently detect rare and low-frequency variants. In addition, the composition of populations in the 1KGP is not complete, despite the fact that the study design has been extended to more than 2,500 samples from more than 20 population groups. The Malays are one of the Austronesian groups predominantly present in Southeast Asia and Oceania, and the Singapore Sequencing Malay Project (SSMP) aims to perform deep whole-genome sequencing of 100 healthy Malays. By sequencing at a minimum of 30× coverage, we have illustrated the higher sensitivity at detecting low-frequency and rare variants and the ability to investigate the presence of hotspots of functional mutations. Compared to the low-pass sequencing in the 1KGP, the deeper coverage allows more functional variants to be identified for each person. A comparison of the fidelity of genotype imputation of Malays indicated that a population-specific reference panel, such as the SSMP, outperforms a cosmopolitan panel with larger number of individuals for common SNPs. For lower-frequency (<5%) markers, a larger number of individuals might have to be whole-genome sequenced so that the accuracy currently afforded by the 1KGP can be achieved. The SSMP data are expected to be the benchmark for evaluating the value of deep population-level sequencing versus low-pass sequencing, especially in populations that are poorly represented in population-genetics studies.  相似文献   
7.
8.

Background

A small group of patients with inherited neuropathy that has been shown to be caused by mutations in the BSCL2 gene. However, little information is available about the role of BSCL2 mutations in inherited neuropathies in Taiwan.

Methodology and Principal Findings

Utilizing targeted sequencing, 76 patients with molecularly unassigned Charcot-Marie-Tooth disease type 2 (CMT2) and 8 with distal hereditary motor neuropathy (dHMN), who were selected from 348 unrelated patients with inherited neuropathies, were screened for mutations in the coding regions of BSCL2. Two heterozygous BSCL2 mutations, p.S90L and p.R96H, were identified, of which the p.R96H mutation is novel. The p.S90L was identified in a pedigree with CMT2 while the p.R96H was identified in a patient with apparently sporadic dHMN. In vitro studies demonstrated that the p.R96H mutation results in a remarkably low seipin expression and reduced cell viability.

Conclusion

BSCL2 mutations account for a small number of patients with inherited neuropathies in Taiwan. The p.R96H mutation is associated with dHMN. This study expands the molecular spectrum of BSCL2 mutations and also emphasizes the pathogenic role of BSCL2 mutations in molecularly unassigned hereditary neuropathies.  相似文献   
9.
Endothelial cells (EC) are the main target for Orientia tsutsugamushi infection and EC dysfunction is a hallmark of severe scrub typhus in patients. However, the molecular basis of EC dysfunction and its impact on infection outcome are poorly understood. We found that C57BL/6 mice that received a lethal dose of O. tsutsugamushi Karp strain had a significant increase in the expression of IL-33 and its receptor ST2L in the kidneys and liver, but a rapid reduction of IL-33 in the lungs. We also found exacerbated EC stress and activation in the kidneys of infected mice, as evidenced by elevated angiopoietin (Ang) 2/Ang1 ratio, increased endothelin 1 (ET-1) and endothelial nitric oxide synthase (eNOS) expression. Such responses were significantly attenuated in the IL-33-/- mice. Importantly, IL-33-/- mice also had markedly attenuated disease due to reduced EC stress and cellular apoptosis. To confirm the biological role of IL-33, we challenged wild-type (WT) mice with a sub-lethal dose of O. tsutsugamushi and gave mice recombinant IL-33 (rIL-33) every 2 days for 10 days. Exogenous IL-33 significantly increased disease severity and lethality, which correlated with increased EC stress and activation, increased CXCL1 and CXCL2 chemokines, but decreased anti-apoptotic gene BCL-2 in the kidneys. To further examine the role of EC stress, we infected human umbilical vein endothelial cells (HUVEC) in vitro. We found an infection dose-dependent increase in the expression of IL-33, ST2L soluble ST2 (sST2), and the Ang2/Ang1 ratio at 24 and 48 hours post-infection. This study indicates a pathogenic role of alarmin IL-33 in a murine model of scrub typhus and highlights infection-triggered EC damage and IL-33-mediated pathological changes during the course of Orientia infection.  相似文献   
10.
Mosquitoes (Diptera: Culicidae) are major vectors of numerous infectious agents. Compounds in mosquito saliva not only facilitate blood-feeding, but may also have an impact upon the immune system of vertebrate hosts. Consequently, the exposure to mosquito saliva may influence pathogen transmission, establishment and disease development. Using two medically important vector mosquitoes, Aedes aegypti (L.) and Culex quinquefasciatus Say, we examined the effects of mosquito saliva on immune cells of host mice. After antigen-specific or non-specific stimulation, murine splenocyte proliferation and production of both Th1 and Th2 cytokines were significantly reduced in the presence of salivary gland extract (SGE) from Ae. aegypti, but not SGE from Cx. quinquefasciatus. T cell populations were highly susceptible to this suppression, showing increased mortality and reduced division rates - judged by flow cytometric analyses. Evidently these two culicine mosquitoes differ in their host immunomodulatory activities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号