首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Global climate change is generally expected to increase net primary production, resulting in increased soil carbon (C) inputs. To gain an understanding of how such increased soil C inputs would affect C cycling in the vast grasslands of northern China, we conducted a field experiment in which the responses of plant and microbial biomass and respiration were studied. Our experiment included the below-ground addition of particulate organic matter (POM) at rates equivalent to 0, 60, 120 and 240 g C m(-2), under either natural precipitation or under enhanced precipitation during the summer period (as predicted for that region in recent simulations using general circulation models). We observed that addition of POM had a large effect on soil microbial biomass and activity and that a major part of the added C was rapidly lost from the system. This suggests that microbial activity in the vast temperate grassland ecosystems of northern China is energy-limited. Moreover, POM addition (and the associated nutrient release) affected plant growth much more than the additional water input. Although we performed no direct fertilization experiments, the response of plant productivity to POM addition (and associated release of nutrients) leads us to believe that plant productivity in the semiarid grassland ecosystems of northern China is primarily limited by nutrients and not by water.  相似文献   

2.
Microbial communities in soils are generally considered to be limited by carbon (C), which could be a crucial control for basic soil functions and responses of microbial heterotrophic metabolism to climate change. However, global soil microbial C limitation (MCL) has rarely been estimated and is poorly understood. Here, we predicted MCL, defined as limited availability of substrate C relative to nitrogen and/or phosphorus to meet microbial metabolic requirements, based on the thresholds of extracellular enzyme activity across 847 sites (2476 observations) representing global natural ecosystems. Results showed that only about 22% of global sites in terrestrial surface soils show relative C limitation in microbial community. This finding challenges the conventional hypothesis of ubiquitous C limitation for soil microbial metabolism. The limited geographic extent of C limitation in our study was mainly attributed to plant litter, rather than soil organic matter that has been processed by microbes, serving as the dominant C source for microbial acquisition. We also identified a significant latitudinal pattern of predicted MCL with larger C limitation at mid- to high latitudes, whereas this limitation was generally absent in the tropics. Moreover, MCL significantly constrained the rates of soil heterotrophic respiration, suggesting a potentially larger relative increase in respiration at mid- to high latitudes than low latitudes, if climate change increases primary productivity that alleviates MCL at higher latitudes. Our study provides the first global estimates of MCL, advancing our understanding of terrestrial C cycling and microbial metabolic feedback under global climate change.  相似文献   

3.
Accurately predicting the effects of global change on net carbon (C) exchange between terrestrial ecosystems and the atmosphere requires a more complete understanding of how nutrient availability regulates both plant growth and heterotrophic soil respiration. Models of soil development suggest that the nature of nutrient limitation changes over the course of ecosystem development, transitioning from nitrogen (N) limitation in ‘young’ sites to phosphorus (P) limitation in ‘old’ sites. However, previous research has focused primarily on plant responses to added nutrients, and the applicability of nutrient limitation-soil development models to belowground processes has not been thoroughly investigated. Here, we assessed the effects of nutrients on soil C cycling in three different forests that occupy a 4 million year substrate age chronosequence where tree growth is N limited at the youngest site, co-limited by N and P at the intermediate-aged site, and P limited at the oldest site. Our goal was to use short-term laboratory soil C manipulations (using 14C-labeled substrates) and longer-term intact soil core incubations to compare belowground responses to fertilization with aboveground patterns. When nutrients were applied with labile C (sucrose), patterns of microbial nutrient limitation were similar to plant patterns: microbial activity was limited more by N than by P in the young site, and P was more limiting than N in the old site. However, in the absence of C additions, increased respiration of native soil organic matter only occurred with simultaneous additions of N and P. Taken together, these data suggest that altered nutrient inputs into ecosystems could have dissimilar effects on C cycling above- and belowground, that nutrients may differentially affect of the fate of different soil C pools, and that future changes to the net C balance of terrestrial ecosystems will be partially regulated by soil nutrient status.  相似文献   

4.
植物与土壤微生物在调控生态系统养分循环中的作用   总被引:14,自引:0,他引:14       下载免费PDF全文
陆地生态系统的地上、地下是相互联系的。植物与土壤微生物作为陆地生态系统中的重要组成部分, 它们之间的相互作用是生态系统地上、地下结合的重要纽带。该文首先介绍了植物在养分循环中对营养元素的吸收、积累和归还等作用, 阐述了土壤微生物对养分有效性及土壤质量具有重要的作用。其次, 重点综述了植物与土壤微生物之间相互依存、相互竞争的关系。植物通过其凋落物与分泌物为土壤微生物提供营养, 土壤微生物作为分解者提供植物可吸收的营养元素, 比如共生体菌根真菌即可使植物根与土壤真菌达到互惠。然而, 植物的养分吸收与微生物的养分固持同时存在, 因而两者之间存在对养分的竞争。通过植物多样性对土壤微生物多样性的影响分析, 以及土壤微生物直接或间接作用于植物多样性和生产力的分析, 探讨了植物物种多样性与土壤微生物多样性之间的内在联系。针对当前植物与土壤微生物对养分循环的调控机制的争论, 提出植物凋落物是调节植物与土壤微生物养分循环的良好媒介, 植物与土壤微生物的共同作用对维持整个生态系统的稳定性具有重要意义。也指出了目前在陆地生态系统地上、地下研究中存在的不足和亟待解决的问题。  相似文献   

5.
Hydraulic redistribution (HR) of water from moist to drier soils, through plant roots, occurs world‐wide in seasonally dry ecosystems. Although the influence of HR on landscape hydrology and plant water use has been amply demonstrated, HR's effects on microbe‐controlled processes sensitive to soil moisture, including carbon and nutrient cycling at ecosystem scales, remain difficult to observe in the field and have not been integrated into a predictive framework. We incorporated a representation of HR into the Community Land Model (CLM4.5) and found the new model improved predictions of water, energy, and system‐scale carbon fluxes observed by eddy covariance at four seasonally dry yet ecologically diverse temperate and tropical AmeriFlux sites. Modeled plant productivity and microbial activities were differentially stimulated by upward HR, resulting at times in increased plant demand outstripping increased nutrient supply. Modeled plant productivity and microbial activities were diminished by downward HR. Overall, inclusion of HR tended to increase modeled annual ecosystem uptake of CO2 (or reduce annual CO2 release to the atmosphere). Moreover, engagement of CLM4.5′s ground‐truthed fire module indicated that though HR increased modeled fuel load at all four sites, upward HR also moistened surface soil and hydrated vegetation sufficiently to limit the modeled spread of dry season fire and concomitant very large CO2 emissions to the atmosphere. Historically, fire has been a dominant ecological force in many seasonally dry ecosystems, and intensification of soil drought and altered precipitation regimes are expected for seasonally dry ecosystems in the future. HR may play an increasingly important role mitigating development of extreme soil water potential gradients and associated limitations on plant and soil microbial activities, and may inhibit the spread of fire in seasonally dry ecosystems.  相似文献   

6.
Free‐air CO2 enrichment (FACE) experiments have demonstrated increased plant productivity in response to elevated (e)CO2, with the magnitude of responses related to soil nutrient status. Whilst understanding nutrient constraints on productivity responses to eCO2 is crucial for predicting carbon uptake and storage, very little is known about how eCO2 affects nutrient cycling in phosphorus (P)‐limited ecosystems. Our study investigates eCO2 effects on soil N and P dynamics at the EucFACE experiment in Western Sydney over an 18‐month period. Three ambient and three eCO2 (+150 ppm) FACE rings were installed in a P‐limited, mature Cumberland Plain Eucalyptus woodland. Levels of plant accessible nutrients, evaluated using ion exchange resins, were increased under eCO2, compared to ambient, for nitrate (+93%), ammonium (+12%) and phosphate (+54%). There was a strong seasonality to responses, particularly for phosphate, resulting in a relatively greater stimulation in available P, compared to N, under eCO2 in spring and summer. eCO2 was also associated with faster nutrient turnover rates in the first six months of the experiment, with higher N (+175%) and P (+211%) mineralization rates compared to ambient rings, although this difference did not persist. Seasonally dependant effects of eCO2 were seen for concentrations of dissolved organic carbon in soil solution (+31%), and there was also a reduction in bulk soil pH (‐0.18 units) observed under eCO2. These results demonstrate that CO2 fertilization increases nutrient availability – particularly for phosphate – in P‐limited soils, likely via increased plant belowground investment in labile carbon and associated enhancement of microbial turnover of organic matter and mobilization of chemically bound P. Early evidence suggests that there is the potential for the observed increases in P availability to support increased ecosystem C‐accumulation under future predicted CO2 concentrations.  相似文献   

7.
Changes in labile carbon (LC) pools and microbial communities are the primary factors controlling soil heterotrophic respiration (Rh) in warming experiments. Warming is expected to initially increase Rh but studies show this increase may not be continuous or sustained. Specifically, LC and soil microbiome have been shown to contribute to the effect of extended warming on Rh. However, their relative contribution is unclear and this gap in knowledge causes considerable uncertainty in the prediction of carbon cycle feedbacks to climate change. In this study, we used a two‐step incubation approach to reveal the relative contribution of LC limitation and soil microbial community responses in attenuating the effect that extended warming has on Rh. Soil samples from three Tibetan ecosystems—an alpine meadow (AM), alpine steppe (AS), and desert steppe (DS)—were exposed to a temperature gradient of 5–25°C. After an initial incubation period, soils were processed in one of two methods: (a) soils were sterilized then inoculated with parent soil microbes to assess the LC limitation effects, while controlling for microbial community responses; or (b) soil microbes from the incubations were used to inoculate sterilized parent soils to assess the microbial community effects, while controlling for LC limitation. We found both LC limitation and microbial community responses led to significant declines in Rh by 37% and 30%, respectively, but their relative contributions were ecosystem specific. LC limitation alone caused a greater Rh decrease for DS soils than AMs or ASs. Our study demonstrates that soil carbon loss due to Rh in Tibetan alpine soils—especially in copiotrophic soils—will be weakened by microbial community responses under short‐term warming.  相似文献   

8.
A reduction in the length of the snow‐covered season in response to a warming of high‐latitude and high‐elevation ecosystems may increase soil carbon availability both through increased litter fall following longer growing seasons and by allowing early winter soil frosts that lyse plant and microbial cells. To evaluate how an increase in labile carbon during winter may affect ecosystem carbon balance we investigated the relationship between carbon availability and winter CO2 fluxes at several locations in the Colorado Rockies. Landscape‐scale surveys of winter CO2 fluxes from sites with different soil carbon content indicated that winter CO2 fluxes were positively related to carbon availability and experimental additions of glucose to soil confirmed that CO2 fluxes from snow‐covered soil at temperatures between 0 and ?3°C were carbon limited. Glucose added to snow‐covered soil increased CO2 fluxes by 52–160% relative to control sites within 24 h and remained 62–70% higher after 30 days. Concurrently a shift in the δ13C values of emitted CO2 toward the glucose value indicated preferential utilization of the added carbon confirming the presence of active heterotrophic respiration in soils at temperatures below 0°C. The sensitivity of these winter fluxes to substrate availability, coupled with predicted changes in winter snow cover, suggests that feedbacks between growing season carbon uptake and winter heterotrophic activity may have unforeseen consequences for carbon and nutrient cycling in northern forests. For example, published winter CO2 fluxes indicate that on average 50% of growing season carbon uptake currently is respired during the winter; changes in winter CO2 flux in response to climate change have the potential to reduce substantially the net carbon sink in these ecosystems.  相似文献   

9.
外来植物入侵对陆地生态系统地下碳循环及碳库的影响   总被引:2,自引:0,他引:2  
闫宗平  仝川 《生态学报》2008,28(9):4440-4450
生物入侵是当今全球性重大环境问题之一, 是全球变化的主要研究内容.评价外来植物入侵对于生态系统影响的研究多集中在地上部分,对于生态系统地下部分影响的研究相对较少.陆地生态系统地下部分对于生态系统过程的重要性之一体现在它处于生态系统碳分配过程的核心环节.入侵种通过影响群落凋落物的输入数量、质量以及输入时间,影响到对于土壤的碳输入,而入侵种与土著种根系的差异以及入侵种对微生物群落的影响是造成土壤呼吸强度发生变化的主要因素,前者土壤呼吸强度一般比后者高.多数研究表明外来植物入侵对生态系统地下碳循环和碳库产生影响,但由于入侵植物种类较多以及研究地点环境条件的不同,关于外来植物入侵对于土壤碳库和土壤有机碳矿化影响的研究结论并不统一.最后,提出了今后该研究领域应加强的一些建议和方向.  相似文献   

10.
This review summarises recent information on beneficial roles that soil nematodes play in the cycling of carbon and other plant nutrients in grassland ecosystems. In particular, we focus on the role of the two dominant functional groups of nematodes, namely the microbial- and root-feeders, and how their activities may enhance soil ecosystem-level processes of nutrient cycling and, ultimately, plant productivity in managed and unmanaged grassland ecosystems. We report recent experiments which show that low amounts of root herbivory by nematodes can increase the allocation of photoassimilate carbon to roots, leading to increased root exudation and microbial activity in the rhizosphere. The effects of these interactions on soil nutrient cycling and plant productivity are discussed. Evidence is presented to show that the feeding activities of microbial-feeding nematodes can enhance nutrient mineralization and plant nutrient uptake in grasslands, but that these responses are highly species-specific and appear to be strongly regulated by higher trophic groups of fauna (top-down regulation). We recommend that future studies of the roles of nematodes in grasslands ecosystems should consider these more complex trophic interactions and also the effects of species diversity of nematodes on soil ecosystem-level processes. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
We measured partitioning of N and P uptake between soil microorganisms and potted Festuca vivipara in soil from a subarctic heath in response to factorial addition of three levels of labile carbon (glucose) combined with two levels of inorganic N and P. The glucose was added to either non-sterilized or sterilized (autoclaved) soils in quantities which were within the range of reported, naturally occurring amounts of C released periodically from the plant canopy. The aims were, firstly, to examine whether the glucose stimulated microbial nutrient uptake to the extent of reducing plant nutrient uptake. This is expected in nutrient-deficient soils if microbes and plants compete for the same nutrients. Secondly, we wanted to test our earlier␣interpretation that growth reduction observed in graminoids after addition of leaf extracts could be caused directly by labile carbon addition, rather than by phytotoxins in the extracts. Addition of high amounts of N did not affect the microbial N pool, whereas high amounts of added P significantly increased the microbial P pool, indicating a luxury P uptake in the microbes. Both plant N and in particular P uptake increased strongly in response to soil sterilization and to addition of extra N or P. The increased␣uptake led to enhanced plant growth when both elements were applied in high amounts, but only led to increased tissue concentrations without growth responses when the nutrients were added separately. Glucose had strong and contrasting effects on plant and microbial N and P uptake. Microbial N and P uptake increased, soil inorganic N and P concentrations were reduced and plant N and P uptake declined when glucose was added. The responses were dose-dependent within the range of 0–450 μg C g−1 soil added to the non-sterilized soil. The opposite responses of plants and microbes showed that plant acquisition of limiting nutrients is dependent on release of nutrients from the soil microbes, which is under strong regulation by the availability and microbial uptake of labile C. Hence, we conclude, firstly, that the microbial populations can compete efficiently with plants for nutrients to an extent of affecting plant growth when the microbial access to labile carbon is high in nutrient deficient soils. We also conclude that reduced growth of plants after addition of leaf extracts to soil can be caused by carbon-induced shifts in nutrient partitioning between plants and microbes, and not necessarily by phytotoxins added with the extracts as suggested by some experiments. Received: 15 February 1997 / Accepted: 12 July 1997  相似文献   

12.
Soil fauna can be an important regulator of community parameters and ecosystem processes, but there have been few quantitative syntheses of the role of soil fauna in terrestrial soil communities and ecosystems. Here, we conducted a meta‐analysis to investigate the impacts of invertebrate soil micro‐ and mesofauna (grazers and predators) on plant productivity and microbial biomass. Overall our results indicate that an increase in the biomass of soil fauna increased aboveground plant productivity across ecosystems by 35% and decreased microbial biomass by 8%. In addition, we found no evidence for trophic cascades in terrestrial soil food webs, but the bacterivorous component of soil fauna influenced plant productivity and microbial biomass more than did the fungivorous component. Furthermore, changes in the biomass of soil fauna differentially affected plant productivity among plant functional groups: a higher biomass of soil fauna increased aboveground productivity by 70% in coniferous systems. However, in ecosystems dominated by legumes, a functional group with lower inorganic nitrogen requirements, there was no response of aboveground productivity to increases in the biomass of soil fauna. In sum, the results of this meta‐analysis indicate that soil fauna help to regulate ecosystem production, especially in nutrient‐limited ecosystems.  相似文献   

13.
Species‐rich plant communities have been shown to be more productive and to exhibit increased long‐term soil organic carbon (SOC) storage. Soil microorganisms are central to the conversion of plant organic matter into SOC, yet the relationship between plant diversity, soil microbial growth, turnover as well as carbon use efficiency (CUE) and SOC accumulation is unknown. As heterotrophic soil microbes are primarily carbon limited, it is important to understand how they respond to increased plant‐derived carbon inputs at higher plant species richness (PSR). We used the long‐term grassland biodiversity experiment in Jena, Germany, to examine how microbial physiology responds to changes in plant diversity and how this affects SOC content. The Jena Experiment considers different numbers of species (1–60), functional groups (1–4) as well as functional identity (small herbs, tall herbs, grasses, and legumes). We found that PSR accelerated microbial growth and turnover and increased microbial biomass and necromass. PSR also accelerated microbial respiration, but this effect was less strong than for microbial growth. In contrast, PSR did not affect microbial CUE or biomass‐specific respiration. Structural equation models revealed that PSR had direct positive effects on root biomass, and thereby on microbial growth and microbial biomass carbon. Finally, PSR increased SOC content via its positive influence on microbial biomass carbon. We suggest that PSR favors faster rates of microbial growth and turnover, likely due to greater plant productivity, resulting in higher amounts of microbial biomass and necromass that translate into the observed increase in SOC. We thus identify the microbial mechanism linking species‐rich plant communities to a carbon cycle process of importance to Earth's climate system.  相似文献   

14.
草地是我国陆地生态系统的重要组成部分, 具有重要的生产和生态功能。过去几十年来, 受气候变化和过度放牧等因素影响, 我国90%的天然草地发生不同程度退化。草地退化打破了土壤养分平衡, 影响草地生态系统的结构和功能。该研究以青藏高原高寒草地为研究对象, 基于三江源区多点采样和整个青藏高原高寒草地的meta分析相结合的手段, 解析了表层0-10 cm土壤和微生物碳氮磷含量及其化学计量特征随不同草地退化程度(未退化、中度和重度退化)的变化规律。结果显示, 草地退化整体上降低土壤有机碳、总氮和总磷含量及其化学计量比。土壤微生物碳氮含量随着退化程度的加剧而下降, 微生物磷含量不受退化的影响。微生物碳氮磷化学计量比沿退化梯度没有显著的变化规律, 且土壤和微生物元素化学计量比之间未呈现显著相关关系。以上结果表明, 草地退化致使土壤养分化学计量关系发生显著改变, 微生物群落自身却能维持一定的养分平衡。在长时间尺度上, 基于养分平衡的土壤质量提升技术可有效地促进退化高寒草地恢复, 改善其生态系统服务功能。  相似文献   

15.
冬季升温对高山生态系统碳氮循环过程的影响   总被引:1,自引:0,他引:1  
宗宁  石培礼 《生态学报》2020,40(9):3131-3143
全球温度升高是目前面临的重要环境问题,但存在明显的季节差异性,即冬季升温幅度显著高于夏季的季节非对称性趋势,这在高纬度和高海拔地区更加显著。冬季升温会直接影响积雪覆盖与冰冻层厚度,并引起冻融交替循环的增加,而冬季植物处于休眠状态,这会直接影响土壤中有效氮的吸收与损失,引起土壤有效氮可利用性的变化。然而,关于冬季增温对后续生长季节植物活动、土壤碳氮循环过程的影响等方面的研究仍存在诸多不确定。综述了冬季升温对积雪覆盖与冻融交替循环改变对高山生态系统物质循环的影响,以及冬季升温对土壤碳氮循环、微生物与酶活性的影响,并由此引起的植物物候期、群落结构、生产与养分循环与凋落物分解等生理、生态过程方面的研究进展。在未来的研究中,应针对不同生态系统特点选择合适的冬季增温方式,加强非极地苔原地区关于冬季升温的研究,注重关注冬季升温对植物-土壤微生物之间反馈作用的影响,重点关注冬季升温对生态系统的延滞效应。  相似文献   

16.
孙忠林  王传宽 《生态学报》2014,34(15):4133-4141
可溶性碳(Dissolved carbon,DC)和颗粒碳(particulate carbon,PC)通量作为森林生态系统碳收支的重要组分,在森林固碳功能的评价和模型预测中具有重要意义,但常因认识不足、测定困难等而在森林碳汇研究中被忽略。综述了森林生态系统DC和PC的组成、作用、相关生态过程及其影响因子,并展望了该领域应该优先考虑的研究问题。森林生态系统DC和PC主要包括可溶性有机碳、可溶性无机碳和颗粒有机碳,主要来源于生态系统的净初级生产量。DC和PC是森林土壤的活性碳库,主要以大气沉降、穿透雨和凋落物的形式输入森林土壤系统,并通过土壤呼吸、侧向运输及渗透流失的方式输出生态系统。从局域尺度看,DC和PC通量受根系分泌、细根分解、微生物周转等生物过程的影响较大;从区域尺度看,它们受土壤和植被特性、生态过程耦联关系、气候因子以及全球变化的综合影响。该领域应该优先考虑:(1)探索不同时空尺度下森林生态系统DC和PC通量的控制因子及其耦联关系,揭示其中的驱动机理;(2)探索DC和PC与其它森林生态系统碳组分的相互关系及转化,阐明DC和PC通量与其它养分之间潜在的生态化学计量关系;(3)探索全球变化,特别是人类活动(如森林经营)和极端干扰事件(如林火、旱涝、冰冻、冻融交替等)对森林生态系统DC和PC通量的影响。  相似文献   

17.
Long-term atmospheric CO2 concentration records have suggested a reduction in the positive effect of warming on high-latitude carbon uptake since the 1990s. A variety of mechanisms have been proposed to explain the reduced net carbon sink of northern ecosystems with increased air temperature, including water stress on vegetation and increased respiration over recent decades. However, the lack of consistent long-term carbon flux and in situ soil moisture data has severely limited our ability to identify the mechanisms responsible for the recent reduced carbon sink strength. In this study, we used a record of nearly 100 site-years of eddy covariance data from 11 continuous permafrost tundra sites distributed across the circumpolar Arctic to test the temperature (expressed as growing degree days, GDD) responses of gross primary production (GPP), net ecosystem exchange (NEE), and ecosystem respiration (ER) at different periods of the summer (early, peak, and late summer) including dominant tundra vegetation classes (graminoids and mosses, and shrubs). We further tested GPP, NEE, and ER relationships with soil moisture and vapor pressure deficit to identify potential moisture limitations on plant productivity and net carbon exchange. Our results show a decrease in GPP with rising GDD during the peak summer (July) for both vegetation classes, and a significant relationship between the peak summer GPP and soil moisture after statistically controlling for GDD in a partial correlation analysis. These results suggest that tundra ecosystems might not benefit from increased temperature as much as suggested by several terrestrial biosphere models, if decreased soil moisture limits the peak summer plant productivity, reducing the ability of these ecosystems to sequester carbon during the summer.  相似文献   

18.
Although prokaryotes are small in size, they are a significant biomass component in aquatic planktonic ecosystems and play a major role in biogeochemical processes. A review of the recent literature shows that the relative importance of prokaryotes to material and energy fluxes is maximized in low-productivity (oligotrophic) ecosystems and decreases in high-productivity (eutrophic) ecosystems. We conclude that competition with eukaryotic autotrophs for dissolved nutrients and competition with phagotrophic heterotrophs and physical processes (sinking, photooxidation) for organic carbon (C) play important roles in determining the relative abundance and impact of prokaryotes in aquatic systems. Oligotrophic systems have low nutrient concentrations, with high proportions of dissolved nutrients in organic form, which favors prokaryotic heterotrophs over phytoplankton. Furthermore, a high proportion of the available organic C is dissolved rather than particulate, which favors prokaryotic heterotrophs over phagotrophic heterotrophs. In eutrophic systems, increased relative concentrations and loading of inorganic nutrients and increased relative concentrations of particulate organic C select for phytoplankton and phagotrophic heterotrophs over prokaryotic heterotrophs. Increased particle sinking fluxes and/or decreased excretion of organic carbon (EOC) may also decrease the relative importance of prokaryotic heterotrophs in eutrophic systems. In oligotrophic systems, interactions between autotrophs and heterotrophs are tightly coupled because the dominant heterotrophs are similar in size and growth rates, as well as having similar nutrient composition to the dominant autotrophs, small phytoplankton. In eutrophic systems, increased productivity passes through zooplankton that are larger and have slower growth rates than the autotrophs, leading to a greater potential for decoupled auto- and heterotrophic production and increased export production. Received 18 July 2000; Accepted 13 September 2001.  相似文献   

19.
Microbes are the unseen majority in soil and comprise a large portion of life's genetic diversity. Despite their abundance, the impact of soil microbes on ecosystem processes is still poorly understood. Here we explore the various roles that soil microbes play in terrestrial ecosystems with special emphasis on their contribution to plant productivity and diversity. Soil microbes are important regulators of plant productivity, especially in nutrient poor ecosystems where plant symbionts are responsible for the acquisition of limiting nutrients. Mycorrhizal fungi and nitrogen-fixing bacteria are responsible for c. 5–20% (grassland and savannah) to 80% (temperate and boreal forests) of all nitrogen, and up to 75% of phosphorus, that is acquired by plants annually. Free-living microbes also strongly regulate plant productivity, through the mineralization of, and competition for, nutrients that sustain plant productivity. Soil microbes, including microbial pathogens, are also important regulators of plant community dynamics and plant diversity, determining plant abundance and, in some cases, facilitating invasion by exotic plants. Conservative estimates suggest that c. 20 000 plant species are completely dependent on microbial symbionts for growth and survival pointing to the importance of soil microbes as regulators of plant species richness on Earth. Overall, this review shows that soil microbes must be considered as important drivers of plant diversity and productivity in terrestrial ecosystems.  相似文献   

20.
Soil microbial carbon use efficiency (CUE) is a crucial parameter that can be used to evaluate the partitioning of soil carbon (C) between microbial growth and respiration. However, general patterns of microbial CUE among terrestrial ecosystems (e.g., farmland, grassland, and forest) remain controversial. To address this knowledge gap, data from 41 study sites (n = 197 soil samples) including 58 farmlands, 95 forests, and 44 grasslands were collected and analyzed to estimate microbial CUEs using a biogeochemical equilibrium model. We also evaluated the metabolic limitations of microbial growth using an enzyme vector model and the drivers of CUE across different ecosystems. The CUEs obtained from soils of farmland, forest, and grassland ecosystems were significantly different with means of 0.39, 0.33, and 0.42, respectively, illustrating that grassland soils exhibited higher microbial C sequestration potentials (p < .05). Microbial metabolic limitations were also distinct in these ecosystems, and carbon limitation was dominant exhibiting strong negative effects on CUE. Exoenzyme stoichiometry played a greater role in impacting CUE values than soil elemental stoichiometry within each ecosystem. Specifically, soil exoenzymatic ratios of C:phosphorus (P) acquisition activities (EEAC:P) and the exoenzymatic ratio of C:nitrogen (N) acquisition activities (EEAC:N) imparted strong negative effects on soil microbial CUE in grassland and forest ecosystems, respectively. But in farmland soils, EEAC:P exhibited greater positive effects, showing that resource constraints could regulate microbial resource allocation with discriminating patterns across terrestrial ecosystems. Furthermore, mean annual temperature (MAT) rather than mean annual precipitation (MAP) was a critical climate factor affecting CUE, and soil pH as a major factor remained positive to drive the changes in microbial CUE within ecosystems. This research illustrates a conceptual framework of microbial CUEs in terrestrial ecosystems and provides the theoretical evidence to improve soil microbial C sequestration capacity in response to global change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号