首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18614篇
  免费   1401篇
  国内免费   1206篇
  2024年   26篇
  2023年   227篇
  2022年   221篇
  2021年   885篇
  2020年   563篇
  2019年   802篇
  2018年   799篇
  2017年   564篇
  2016年   830篇
  2015年   1106篇
  2014年   1345篇
  2013年   1442篇
  2012年   1677篇
  2011年   1520篇
  2010年   970篇
  2009年   940篇
  2008年   1047篇
  2007年   978篇
  2006年   797篇
  2005年   683篇
  2004年   528篇
  2003年   518篇
  2002年   438篇
  2001年   345篇
  2000年   301篇
  1999年   294篇
  1998年   168篇
  1997年   164篇
  1996年   155篇
  1995年   117篇
  1994年   84篇
  1993年   70篇
  1992年   111篇
  1991年   84篇
  1990年   68篇
  1989年   53篇
  1988年   44篇
  1987年   44篇
  1986年   39篇
  1985年   52篇
  1984年   9篇
  1983年   17篇
  1982年   10篇
  1981年   11篇
  1980年   7篇
  1979年   7篇
  1978年   6篇
  1977年   8篇
  1974年   5篇
  1969年   11篇
排序方式: 共有10000条查询结果,搜索用时 286 毫秒
1.
2.
Using hot alkaline solution, the elastic laminae were extracted from aortas and observed with scanning electron microscopy. Vascular structures were found in the elastin layers of the tunica media in descending thoracic aortas of sheep, dogs, and pigs, and these tube-like structures were filled with elastomer which was injected through the heart of the animal in vivo. Sub-intimal microvessels were also found to be filled with the elastomer and it is concluded that vasa vasorum can exist close to the internal elastic lamina in these animals.  相似文献   
3.
Secretion of levansucrase from Zymomonas mobilis in Escherichiacoli by glycine supplement was investigated. A significant amount of levansucrase (about 25% of total activity) was found in intact whole-cells. Cell fractionation experiments showed that levansucrase was found both in the periplasmic space and in the cytoplasmic fraction of E. coli. None or only trace amounts of levansucrase was detected in the extracellular culture broth at 24 h of cultivation and it accrued with the increasing concentration of glycine in the culture medium and duration of the culture period. Optimal glycine concentration for the maximum secretion of levansucrase was in the range of 0.8-1%, in which approximately 20-50% of levansucrase was released into the extracellular fraction at 24 h of cultivation, although glycine retarded the bacterial growth.  相似文献   
4.
A low pH method of liposome-membrane fusion (Schneider et al., 1980, Proc. Natl. Acad. Sci. U. S. A. 77:442) was used to enrich the mitochondrial inner membrane lipid bilayer 30-700% with exogenous phospholipid and cholesterol. By varying the phospholipid-to- cholesterol ratio of the liposomes it was possible to incorporate specific amounts of cholesterol (up to 44 mol %) into the inner membrane bilayer in a controlled fashion. The membrane surface area increased proportionally to the increase in total membrane bilayer lipid. Inner membrane enriched with phospholipid only, or with phospholipid plus cholesterol up to 20 mol %, showed randomly distributed intramembrane particles (integral proteins) in the membrane plane, and the average distance between intramembrane particles increased proportionally to the amount of newly incorporated lipid. Membranes containing between 20 and 27 mol % cholesterol exhibited small clusters of intramembrane particles while cholesterol contents above 27 mol % resulted in larger aggregations of intramembrane particles. In phospholipid-enriched membranes with randomly dispersed intramembrane particles, electron transfer activities from NADH- and succinate-dehydrogenase to cytochrome c decreased proportionally to the increase in distance between the particles. In contrast, these electron- transfer activities increased with decreasing distances between intramembrane particles brought about by cholesterol incorporation. These results indicate that (a) catalytically interacting redox components in the mitochondrial inner membrane such as the dehydrogenase complexes, ubiquinone, and heme proteins are independent, laterally diffusible components; (b) the average distance between these redox components is effected by the available surface area of the membrane lipid bilayer; and (c) the distance over which redox components diffuse before collision and electron transfer mediates the rate of such transfer.  相似文献   
5.
Mutations in immunoglobulin µ-binding protein 2 (Ighmbp2) cause distal spinal muscular atrophy type 1 (DSMA1), an autosomal recessive disease that is clinically characterized by distal limb weakness and respiratory distress. However, despite extensive studies, the mechanism of disease-causing mutations remains elusive. Here we report the crystal structures of the Ighmbp2 helicase core with and without bound RNA. The structures show that the overall fold of Ighmbp2 is very similar to that of Upf1, a key helicase involved in nonsense-mediated mRNA decay. Similar to Upf1, domains 1B and 1C of Ighmbp2 undergo large conformational changes in response to RNA binding, rotating 30° and 10°, respectively. The RNA binding and ATPase activities of Ighmbp2 are further enhanced by the R3H domain, located just downstream of the helicase core. Mapping of the pathogenic mutations of DSMA1 onto the helicase core structure provides a molecular basis for understanding the disease-causing consequences of Ighmbp2 mutations.  相似文献   
6.
Primary open-angle glaucoma (POAG) is one of the leading causes of blindness worldwide. The association between the APOE ε2/ε3/ε4 polymorphism and the risk of POAG has been widely reported, but the results of previous studies remain controversial. To comprehensively evaluate the APOE ɛ2/ɛ3/ε4 polymorphism on the genetic risk for POAG, we performed a systematic review and meta-analysis of previously published studies. The PubMed and Web of Science databases were systematically searched to identify relevant studies. Data were extracted from these studies and odds ratios with corresponding 95% confidence intervals were computed to estimate the strength of the association. Stratified analyses according to ethnicity and sensitivity analyses were also conducted for further confirmation. A total of nine studies were eligible for the meta-analysis, and these studies included data on 1928 POAG cases and 1793 unrelated match controls. The combined results showed that there were no associations between the APOE ε2/ε3/ε4 polymorphism and POAG risk in any of the 10 comparison models. The analysis that was stratified by ethnicity subgroups also failed to reveal a significant association. The sensitivity analysis confirmed the stability and reliability of the findings. There was no risk of publication bias. Our meta-analysis provides strong evidence that the APOE ε2/ε3/ε4 polymorphism is not associated with POAG susceptibility in any populations.  相似文献   
7.
DC‐UbP/UBTD2 is a ubiquitin (Ub) domain‐containing protein first identified from dendritic cells, and is implicated in ubiquitination pathway. The solution structure and backbone dynamics of the C‐terminal Ub‐like (UbL) domain were elucidated in our previous work. To further understand the biological function of DC‐UbP, we then solved the solution structure of the N‐terminal domain of DC‐UbP (DC‐UbP_N) and studied its Ub binding properties by NMR techniques. The results show that DC‐UbP_N holds a novel structural fold and acts as a Ub‐binding domain (UBD) but with low affinity. This implies that the DC‐UbP protein, composing of a combination of both UbL and UBD domains, might play an important role in regulating protein ubiquitination and delivery of ubiquitinated substrates in eukaryotic cells.  相似文献   
8.
COVID-19, caused by SARS-CoV-2, is an acute and rapidly developing pandemic, which leads to a global health crisis. SARS-CoV-2 primarily attacks human alveoli and causes severe lung infection and damage. To better understand the molecular basis of this disease, we sought to characterize the responses of alveolar epithelium and its adjacent microvascular endothelium to viral infection under a co-culture system. SARS-CoV-2 infection caused massive virus replication and dramatic organelles remodeling in alveolar epithelial cells, alone. While, viral infection affected endothelial cells in an indirect manner, which was mediated by infected alveolar epithelium. Proteomics analysis and TEM examinations showed viral infection caused global proteomic modulations and marked ultrastructural changes in both epithelial cells and endothelial cells under the co-culture system. In particular, viral infection elicited global protein changes and structural reorganizations across many sub-cellular compartments in epithelial cells. Among the affected organelles, mitochondrion seems to be a primary target organelle. Besides, according to EM and proteomic results, we identified Daurisoline, a potent autophagy inhibitor, could inhibit virus replication effectively in host cells. Collectively, our study revealed an unrecognized cross-talk between epithelium and endothelium, which contributed to alveolar–capillary injury during SARS-CoV-2 infection. These new findings will expand our understanding of COVID-19 and may also be helpful for targeted drug development.Subject terms: Mechanisms of disease, Viral infection  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号