首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycine, glycylglycine, glycine methyl ester and glycine ethyl ester were found to be effective for the production and release of γ-galactosidase by Escherichia coli. Addition of an appropriate concentration of glycine and glycylglycine to the culture increased total enzyme production 6 to 7-fold and extracellular enzyme production over 240-fold at 24 hr cultivation. The enzyme synthesis was stimulated even at the exponential period of growth, and 93% of enzyme was found in the culture fluid at 24 hr cultivation on addition of 1.2% glycine. A large amount of protein was also accumulated in the culture fluid. A micrograph showed glycine gave swollen and irregular cells, indicating that the cell surface was altered. Various amino acid analogues and some antibiotics had a small or no effect on the production and release of the enzyme as compared with glycine. Polypeptone or brain heart infusion was needed as a nitrogen source for efficient production of the enzyme.  相似文献   

2.
A new and simple method for the purification of extracellular levansucrase from Zymomonas mobilis from highly viscous fermentation broth was developed. After incubation of the fermentation broth with a fructose-polymer cleaving enzyme preparation (Fructozyme, Novozymes, DK) for 48 h, levansucrase precipitated as aggregates and was redissolved in a 3 M urea solution. By ongoing size-exclusion chromatography on Sephacryl S-300 the final levansucrase preparation was purified 100-fold and exhibited a specific activity of 25–35 U/mgprotein. The levansucrase was stable in 3 M urea solution for at least four months without inactivation. To maximize the enzyme yield the dynamic changes of extracellular levansucrase activity during fermentation were investigated. The highest levansucrase activity was observed during the logarithmic phase of growth (15–19 h of fermentation).Received: 26 September 2002 / Accepted: 24 October 2002  相似文献   

3.
OmpA signal peptide mediated cgt gene from Paenibacillus macerans JFB05-01 was cloned and expressed in E. coli BL21 (DE3). The effects of glycine and Triton X-100 on extracellular production of α-cyclodextrin glycosyltransferase (α-CGTase) were investigated. When supplemented with Gly or Triton X-100 to the culture media individually, the secreted extracellular enzyme reached 32 or 33 U/mL at 48 h of cultivation, respectively. When supplemented with Gly and Triton X-100 together, the extracellular α-CGTase activity reached 48 U/mL after 48 h cultivation, which was 20-fold of the control group without any additives. Analysis of membrane permeability demonstrated that addition of glycine and Triton X-100 enhanced the permeability of both outer and inner membrane. The potential mechanism of the enhanced protein secretion was discussed.  相似文献   

4.
Bacillus subtilis NRC33a was able to produce both inducible and constitutive extracellular levansucrase, respectively, using sucrose and glucose as carbon source. The optimal production of the levansucrase was at 30°C. The effect of different nitrogen sources showed that baker’s yeast with 2% concentration gave the highest levansucrase activity. Addition of 0.15 g/L MgSO4 was the most favorable for levansucrase production. The enzymic synthesis of levan was studied using 60% acetone fraction. The results indicated that high enzyme concentrations produced increasing amounts of levan, and hence conversion of fructose to levan reached 84% using 1000 μg/ml enzyme protein. Sucrose concentration was the most effective factor controlling the molecular weight of the synthesized levan. The conversion of fructose to levan was maximal at 30°C. The time of reaction clearly affected the conversion of fructose to levan, which reached its maximum productivity at 18 hours (92%). Identification of levan indicated that fructose was the building unit of levan.  相似文献   

5.
A recombinant strain of Saccharomyces cerevisiae harboring GOD gene originated from Aspergillus niger was used for the production of extracellular glucose oxidase. The effect of continuous galactose feeding on the induction of GAL-10 promoter was examined in a 5 l bioreactor. The highest enzyme production level (164 U cmх) was achieved at 96 h of cultivation. The production performance was compared with the results of fed-batch cultivations carried out in the same laboratory. Continuous feeding mode was found to be less productive due to excess ethanol formation and plasmid instability.  相似文献   

6.
The long-term process for producing human granulocyte-colony stimulating factor (hG-CSF) was developed using two-stage cyclic fed-batch culture, in which hG-CSF expressing-recombinant Escherichia coli was directed by an L-arabinose promoter system. For the optimization, the preinduction growth rate during the growth stage and the feeding strategy during the production stage were investigated. The maximum harvest volume during the production stage was predicted before long-term cyclic operation. Based on those optimized strategies, the two-stage cyclic fed-batch culture was performed for 12 cycles (86 h). The cell growths in both stages were maintained at 45-50 g/L and 71-77 g/L, respectively. hG-CSF was stably produced at a level of 8-9 g/L and the plasmid stability was maintained at more than 90%. Volumetric productivity by the two-stage cyclic fed-batch culture was 0.643 g/L/h, which was about 280% higher than that of conventional DO-stat fed-batch culture.  相似文献   

7.
The targeting of recombinant proteins for secretion to the culture medium of Escherichia coli presents significant advantages over cytoplasmic or periplasmic expression. However, a major barrier is inadequate secretion across two cell membranes. In the present study, we attempted to circumvent this secretion problem of the recombinant α-cyclodextrin glycosyltransferase (α-CGTase) from Paenibacillus macerans strain JFB05-01. It was found that glycine could promote extracellular secretion of the recombinant α-CGTase for which one potential mechanism might be the increase in membrane permeability. However, further analysis indicated that glycine supplementation resulted in impaired cell growth, which adversely affected overall recombinant protein production. Significantly, delayed supplementation of glycine could control cell growth impairment exerted by glycine. As a result, if the supplementation of 1% glycine was optimally carried out at the middle of the exponential growth phase, the α-CGTase activity in the culture medium reached 28.5 U/ml at 44 h of culture, which was 11-fold higher than that of the culture in regular terrific broth medium and 1.2-fold higher than that of the culture supplemented with 1% glycine at the beginning of culture.  相似文献   

8.
Levansucrase of Zymomonas mobilis was immobilized onto the surface of hydroxyapatite by ionic binding. Optimum conditions for the immobilization were: pH 6.0, 4 h of immobilization reaction time, and 20 U of enzyme/g of matrix. The enzymatic and biochemical properties of the immobilized enzyme were similar to those of the native enzyme, especially towards the effect of salts and detergents. The immobilized enzyme showed sucrose hydrolysis activity higher as that of the native enzyme, but levan formation activity was 70% of the native enzyme. HPLC analysis of levan produced by immobilized enzyme showed the presence of two different types of levan: high-molecular-weight levan and low-molecular-weight levan. The proportion of low-molecular-weight levan to total levan produced by the immobilized enzyme was much higher than that with the native enzyme, indicating that immobilized levansucrase could be applied to produce low-molecular-weight levan. Immobilized levansucrase retained 65% of the original activity after 6 times of repeated uses and 67% of the initial activity after 40 d when stored at 4 °C.  相似文献   

9.
The ethanol and temperature effects on the ratio between Zymomonas mobilis 113S extracellular levansucrase activities were studied using fermentation broth supernatant, ??levan?Clevansucrase?? sediment precipitated by ethanol and highly purified enzyme. The fructooligosaccharide (FOS) production at different temperatures in the presence of ethanol was investigated. An ethanol increases FOS biosynthesis activity part of levansucrase. Especially, this effect was pronounced at lower temperatures (35?C40?°C) and using purified levansucrase. The inverse relationship between temperature and ratio synthetic activity/total activity of levansucrase was found. The FOS composition containing mostly 1-kestose, 6-kestose, and neokestose obtained in the presence of different ethanol concentrations was found relative constant, while the changes in the sucrose concentration and temperature gave slight changes in the ratio between 1-kestose and 6-kestose.  相似文献   

10.
Citric acid production by Aspergillus niger NCIM 548 and Candida lipolytica NCIM 3472 has been studied in shake culture using glucose and molasses as carbon sources. Methanol addition (3% v/v) at 40 h of fermentation enhanced the production of citric acid by Aspergillus niger whereas a reduction in citric acid production by Candida lipolytica was observed with addition of methanol. Maximum citric acid concentration of 12 kg/m3 was obtained with Aspergillus niger using molasses in the presence of methanol, while maximum citric acid concentration of 8.4 kg/m3 was obtained with Candida lipolytica using glucose without methanol. It appears that product formation by Aspergillus niger is either non-growth associated or partially growth associated depending on the substrate. Methanol addition changes the nature of product formation in case of Candida lipolytica.  相似文献   

11.
Summary The Zymomonas mobilis gene sacB that encodes the extracellular levansucrase was cloned and expressed in Escherichia coli. The gene product exhibited both sucrose hydrolysis activity and levan forming capability. Sub-cellular fractionation of E. coli carrying pLSS41 revealed that about 95% of the total sucrase activity was detected in the cytoplasmic fraction. The levansucrase gene was overexpressed (about hundred fold) in E. coli under T7 polymerase expression system. Nucleotide sequence analysis of this gene revealed an open reading frame of 1269 bp long coding for a protein of 423 amino acids with a molecular mass of 46.7 KDa. The deduced amino acid sequence was identical to the N-terminal amino acids of protein A51 of Z. mobilis ZM4. Therefore, the product of sacB is levansucrase. This is the first extracellular enzyme of Z. mobilis sequenced which does not possess a signal sequence. This gene is located 198 bp upstream of sacC gene encoding for the extracellular sucrase forming a gene cluster  相似文献   

12.
A synthetic oligodeoxynucleotide encoding the vasopressin peptide was ligated to the 3' terminal codon of sacB, the structural gene of levansucrase. This gene fusion was integrated into the chromosome of a Bacillus subtilis strain able to overproduce levansucrase. The extracellular production of the hybrid protein, consisting of the whole levansucrase primary sequence plus the nine amino acids of the vasopressin peptide added at the C-terminal end, represented 50-55% of that found for the wild-type levansucrase (20 mg l-1). The purified hybrid protein displayed the same conformational stability, protease insensitivity and enzymic properties as the wild-type levansucrase. However, the rate and the yield of the unfolding-folding transition at the pH and temperature used for bacterial growth were lower in the case of the hybrid protein; the latter also required a higher iron concentration to be completely folded.  相似文献   

13.
Parenchymal cells from normal adult rat liver, prepared with high yield (30 × 106 cells/g liver) and viability index (>96%) by a non-perfusion method, were maintained in non-proliferating monolayer culture. Several metabolic functions were investigated for 7 days to evaluate functional integrity of the cultured hepatocytes. Leucine was linearly incorporated into protein for 4.5 h at each day of cultivation and the incorporation rate increased up to 2-fold after 3 days. Urea production was maintained at a rate of 0.5 μmoles/mg protein × h for at least 7 days, and its amount was enhanced 2-fold within 24 h by the addition of 3 mM NH4Cl. Glucose was formed during the first days by the hepatocytes and was then taken up with increasing amount from the surrounding medium. Lactate consumption, on the other hand, was replaced by lactate production after one day of cultivation.Variations in enzyme levels of lactate dehydrogenase, arginase, glutamine synthetase and glucose-6-phosphatase were also studied during the whole culture period. Cell leakage, which was detected only in the case of lactate dehydrogenase (LDH), occurred through the 4th day along with a concomitant loss of intracellular LDH activity. After 4 days, however, the enzyme activity returned to the initial level. Arginase was maintained throughout the cultivation period and was stimulated 2- to 3-fold within 24 h by NH4Cl. Glutamine synthetase declined within the first 4 h of cultivation and then remained in the hepatocytes with a transitory rise after 2 days. Its activity was also found to be inversely related to the concentration of glutamine in the culture medium up to 4 mM. Glucose-6-phosphatase gradually decreased during the cultivation period, the enzyme activity, however, was stimulated by glucagon within 24 h.  相似文献   

14.
Coffee (Coffea arabica) plants are usually grown in soils containing high levels of organic materials. Under these conditions, aluminum (Al) is toxic because of the acidic nature of the soils. Al is the most abundant metal found in the earth's crust and occurs in a number of different forms in soil. In acid soils, Al toxicity is a global problem that limits crop productivity. A major problem in obtaining cellular lines displaying Al tolerance in culture is the composition of the medium. In the experiments presented here, we modified the composition of the culture medium for a C. arabica cell line to produce Al toxicity. Murashige-Skoog media was used, complete (MS) and half ionic strength (MSHIS), at either pH 5.8 or 4.3. We found that MSHIS and pH 4.3 provided the optimal conditions to obtain Al toxicity as measured by the ability to grow in a range of Al concentrations (25-1,000 µM). The lethal dose (LD50) under these conditions was 25 µM. The concentrations of free Al in the culture medium were corroborated by the fluorescent compound Morin. Al was found to enter the cell after 30 min, and the signal was then retained for up to 2 h.  相似文献   

15.
The activities of extracellular systems of hemicellulases, pectinases, and cellulases was studied during a 72-h cultivation of Geotrichum candidum 3C. The culture was grown on a medium containing 3% cell walls isolated from wheat grain capsules, which served as the sole carbon source. Enzymes catalyzing the degradation of pectin substances (beet pectin, alpha-L-arabinan, and 1,4-beta-D-galactan), as well as beta-D-galactosidase and alpha-L-arabinofuranosidase involved in their hydrolysis, were formed first (4 h after the beginning of cultivation). Enzymes hydrolyzing 4-O-methyl-alpha-D-glucurono-beta-D-xylan and sodium carboxymethyl xylan were also found in the culture liquid after 4 h of fungal growth. The contents of pectin-degrading and xylanolytic enzymes reached their maximum levels after 52-56 and 72 h of growth, respectively. Cellulolytic enzymes were detected after 8-28 h of cultivation. Enzymes degrading alpha-D-galacto-beta-D-mannan were found 24 h after the beginning of growth; their content was maximum after 72 h of cultivation.  相似文献   

16.
A new and simple method for the purification of extracellular levansucrase from Zymomonas mobilis from highly viscous fermentation broth was developed. After incubation of the fermentation broth with a fructose-polymer cleaving enzyme preparation (Fructozyme, Novozymes, DK) for 48 h, levansucrase precipitated as aggregates and was redissolved in a 3 M urea solution. By ongoing size-exclusion chromatography on Sephacryl S-300 the final levansucrase preparation was purified 100-fold and exhibited a specific activity of 25-35 U/mg(protein). The levansucrase was stable in 3 M urea solution for at least four months without inactivation. To maximize the enzyme yield the dynamic changes of extracellular levansucrase activity during fermentation were investigated. The highest levansucrase activity was observed during the logarithmic phase of growth (15-19 h of fermentation).  相似文献   

17.
In this study, a high yield production bioprocess with recombinant Bacillus megaterium for the production of the extracellular enzyme levansucrase (SacB) was developed. For basic optimization of culture parameters and nutrients, a recombinant B. megaterium reporter strain that produced green fluorescent protein under control of a vector-based xylose-inducible promoter was used. It enabled efficient microtiter plate-based screening via fluorescence analysis. A pH value of pH?6, 20 % of dissolved oxygen, 37 °C, and elevated levels of biotin (100 μg?L?1) were found optimal with regard to high protein yield and reduced overflow metabolism. Among the different compounds tested, fructose and glycerol were identified as the preferred source of carbon. Subsequently, the settings were transferred to a B. megaterium strain recombinantly producing levansucrase SacB based on the plasmid-located xylose-inducible expression system. In shake flask culture under the optimized conditions, the novel strain already secreted the target enzyme in high amounts (14 U?mL?1 on fructose and 17.2 U?mL?1 on glycerol). This was further increased in high cell density fed-batch processes up to 55 U?mL?1, reflecting a levansucrase concentration of 0.52 g?L?1. This is 100-fold more than previous efforts for this enzyme in B. megaterium and more than 10-fold higher than reported values of other extracellular protein produced in this microorganism so far. The recombinant strain could also handle raw glycerol from biodiesel industry which provided the same amount and quality of the recombinant protein and suggests future implementation into existing biorefinery concepts.  相似文献   

18.
Tůmová  E.  Sofrová  D. 《Photosynthetica》2002,40(1):103-108
Intact cells of Synechococcus elongatus were treated with different concentrations (0.1 and 1.0 mM = Cd0.1, Cd1.0) of CdCl2 for 24 h. Cd0.1 treatment stimulated growth of the cell culture and chlorophyll (Chl) a concentration in the culture. Cd1.0 inhibited both the above mentioned parameters. The oxygen evolving activity of intact cells (H2O BQ) as well as of isolated thylakoid membranes, TM (H2O DCPIP; H2O PBQ + FeCy) decreased after 24 h of Cd1.0 cultivation to 7 %. Photosystem 1 (PS1) activity was less sensitive to the effect of Cd2+ than PS2 activity. CdCl2 concentration in cultivation media after 24 h of cultivation proved that the cyanobacterium cells take up these ions to a large extent from the cultivation medium. After 24 h of the Cd1.0 treatment only 12 % of the amount of Cd2+ originally added to the cultivation medium was found. The ratio of external-antenna pigments, phycocyanin, and allophycocyanin to Chl increased approximately twofold with growing Cd2+ concentration in the cultivation medium. This ratio was found in both TM and dodecylmaltoside extracts.  相似文献   

19.
The gaseous composition is an important factor affecting the performance of plant cell cultures. Gaseous metabolites, especially O2, CO2 and C2H4, play important roles in cell physiology. Forced aeration in bioreactors usually results in poor cell growth and secondary metabolite production. In this work, the effects of gaseous metabolites on cell growth, secondary metabolite formation as well as PPO activity were investigated with respect to Stizolobium hassjoo cell culture producing l-DOPA (3,4-dihydroxyphenylalanine). A device allowing the control of the partial pressures of gaseous metabolites in shake flasks was designed. In addition, a recirculating gas system with a PO2 controller was designed for a bioreactor. This device could maintain constant PO2 and PCO2 in the bioreactor headspace. The results showed that the highest l-DOPA content was attained at PO2=0.30 atm. Higher PO2 values retarded cell growth and increased the pH of the culture broth. High PO2 also enhanced the formation of ethylene and inhibited l-DOPA formation. Carbon dioxide concentrations lower than 5% enhanced cell growth and l-DOPA formation. Cell growth was retarded by 0.3 ppm of ethylene in 2~5 carbon dioxide. Oxygen concentration and D.O. in the broth could be controlled at constant levels in the recirculating culture system. Enrichment of PO2 up to 0.3 atm during the later stage of cultivation facilitated l-DOPA formation. The interaction among the gaseous metabolites and their influences on cell metabolism and l-DOPA formation were elucidated. This information will facilitate the rational operation of plant cell culture systems producing secondary metabolites.  相似文献   

20.
The synthesis of levansucrase is derepressed during the growth of Gluconobacter oxydans L-1 in media with mannitol, sorbitol or fructose. The level of levansucrase activity under these conditions is 20-30 times higher than in cultures growing in the presence of xylite, galactose or glucose. Addition of mannitol or sucrose to the culture grown in a medium with xylite increases the differential rate of levansucrase synthesis. Addition of glucose at a concentration of 1% to the culture growing in a medium with mannitol at constant pH represses the synthesis of levansucrase only for a short period of time (15-20 min). The mechanism regulating the activity of levansucrase in the bacterial culture is susceptible to changes in the pH of the medium: the differential rate of levansucrase synthesis is three-fold higher when the culture is grown at pH 5.7 cf. pH 4.7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号