首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   3篇
  2019年   1篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2011年   1篇
  2007年   2篇
  2006年   3篇
  2004年   2篇
  2001年   1篇
  2000年   2篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
2.
AIMS: To screen industrially important extracellular enzymes from the newly isolated alkalophilic bacilli and to characterize them by phenotypic and 16S-internal transcribed spacer (ITS) rDNA restriction pattern analysis. METHODS AND RESULTS: Three different environmental samples, soil, leather and horse faeces, were collected within the province of Izmir. Isolates grown on Horikoshi-I medium for 24 h at 37 degrees C were screened for extracellular enzyme activity by using eight different substrates: birchwood xylan, carboxymethylcellulose, casein, citrus pectin, polygalacturonic acid, soluble starch, and Tween 20 and 80. In total, 115 extracellular enzyme-producing bacilli were obtained. Casein was hydrolysed by 78%, soluble starch by 67%, citrus pectin by 63%, polygalacturonic acid by 62%, Tween 20 by 34%, birchwood xylan by 16%, Tween 80 by 12%, and carboxymethylcellulose by 3% of the isolates. The isolates were differentiated into 19 distinct homology groups by the 16S-ITS rDNA restriction pattern analysis. CONCLUSIONS: Eight different extracellular enzyme activities were determined in 115 endospore forming bacilli. The largest 16S-ITS rDNA homology group (HT1) included 36% of the isolates, 98% of which degraded casein, polygalacturonic acid, pectin and starch. SIGNIFICANCE AND IMPACT OF THE STUDY: This study is the first report on the characterization of the industrial enzyme-producing alkalophilic bacilli by 16S-ITS rDNA restriction fragment length polymorphism (RFLP). Restriction profiles of 64% of the isolates were found to be different from those of five reference strains used.  相似文献   
3.
4.
Neurochemical Research - Noscapine is a phthalide isoquinoline alkaloid that easily traverses the blood brain barrier and has been used for years as an antitussive agent with high safety. Despite...  相似文献   
5.
6.
7.
In order to continuously supply horticultural products for long periods, it is essential to store them after harvest in low temperatures. However, many tropical and subtropical fruits and vegetables, such as citrus, are sensitive to chilling. In previous studies, the authors have shown that a short hot water rinsing treatment (at 62°C for 20 s) increased chilling tolerance in grapefruit. In order to gain more insight into the molecular mechanisms involved in heat‐induced chilling tolerance, PCR cDNA subtraction analysis was performed which isolated four different PCR fragments whose expression was enhanced 24 h after the heat treatment, and that showed high sequence homology with various plant HSP18‐I, HSP18‐II, HSP22 and HSP70 genes. It was found that the short hot water treatment given at 62°C for 20 s, but not at lower temperatures of 20 or 53°C, increased the expression of the various HSP cDNAs in grapefruit peel tissue. However, when the fruits were kept at ambient temperatures, the increases in HSP mRNA levels following the hot water treatment were temporary and lasted only between 6 and 48 h. Similar temporary increases in the HSP mRNA levels were detected following exposure of the fruit to a hot air treatment at 40°C for 2 h. Nevertheless, when the fruits were treated with hot water but afterwards stored at chilling temperatures of 2°C, the mRNA levels of the various HSP18‐I, HSP18‐II, HSP22 and HSP70 cDNAs increased and remained high and stable during the entire 8‐week cold‐storage period, suggesting their possible involvement in heat‐induced chilling‐tolerance responses. The chilling treatment by itself increased the expression of the HSP18‐I cDNA, but had no effect on the mRNA levels of any of the other HSP cDNAs. Exposure of fruit to other stresses, such as wounding, UV irradiation, anaerobic conditions and exposure to ethylene, had no effect on the expression of the various HSPs. Overall, the study explored the correlation between the expression and persistence of various HSP cDNAs in grapefruit peel tissue during cold storage, on the one hand, and the acquisition of chilling tolerance, on the other hand, and the results suggest that HSPs may play a general role in protecting plant cells under both high‐ and low‐temperature stresses.  相似文献   
8.
9.
The purpose of this study was to evaluate the important technological and fermentative properties of wine yeast strains previously isolated from different wine producing regions of Turkey. The determination of the following important properties was made: growth at high temperatures; fermentative capability in the presence of high sugar concentration; fermentation rate; hydrogen sulfide production; killer activity; resistance to high ethanol and sulfur dioxide; foam production; and enzymatic profiles. Ten local wine yeast strains belonging to Saccharomyces, and one commercial active dry yeast as a reference strain were evaluated. Fermentation characteristics were evaluated in terms of kinetic parameters, including ethanol yield (YP/S), biomass yield (YX/S), theoretical ethanol yield (%), specific ethanol production rate (qp; g/gh), specific glucose uptake rate (qs; g/gh), and the substrate conversion (%). All tested strains were able to grow at 37 °C and to start fermentation at 30° Brix, and were resistant to high concentrations of sulfur dioxide. 60 % of the strains were weak H2S producers, while the others produced high levels. Foam production was high, and no strains had killer activity. Six of the tested strains had the ability to grow and ferment at concentrations of 14 % ethanol. Except for one strain, all fermented most of the media sugars at a high rate, producing 11.0–12.4 % (v/v) ethanol. Although all but one strain had suitable characteristics for wine production, they possessed poor activities of glycosidase, esterase and proteinase enzymes of oenological interest. Nine of the ten local yeast strains were selected for their good oenological properties and their suitability as a wine starter culture.  相似文献   
10.
The objective of this study was to determine the effectiveness of different organic acids (maleic, succinic, and oxalic acid) on enzymatic hydrolysis and fermentation yields of wheat straw. It was also aimed to optimize the process conditions (temperature, acid concentration, and pretreatment time) by using response surface methodology (RSM). In line with this objective, the wheat straw samples were pretreated at three different temperatures (170, 190, and 210°C), acid concentrations (1%, 3%, and 5%) and pretreatment time (10, 20, and 30 min). The findings show that at extreme pretreatment conditions, xylose was solubilized in liquid phase, causing an increase in cellulose and lignin content of biomass. Enzymatic hydrolysis experiments revealed that maleic and oxalic acids were quite effective at achieving high sugar yields (>90%) from wheat straw. In contrast, the highest sugar yields were 50–60%, when the samples were pretreated with succinic acid, indicating that succinic acid was not as effective. The optimum process conditions for maleic acid were, 210°C, 1.08% acid concentration, and 19.8 min; for succinic acid 210°C, 5% acid concentration, and 30 min; for oxalic acid 210°C, 3.6% acid concentration, and 16.3 min. The ethanol yields obtained at optimum conditions were 80, 79, and 59% for maleic, oxalic and succinic acid, respectively. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1487–1493, 2016  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号