首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   6篇
  2023年   1篇
  2021年   4篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   6篇
  2015年   4篇
  2014年   3篇
  2013年   1篇
  2012年   11篇
  2011年   6篇
  2009年   1篇
  2008年   7篇
  2007年   4篇
  2006年   1篇
  2005年   2篇
  2003年   1篇
  2001年   1篇
  1988年   1篇
  1977年   1篇
  1967年   1篇
  1965年   1篇
  1957年   1篇
  1950年   1篇
  1937年   1篇
排序方式: 共有67条查询结果,搜索用时 171 毫秒
1.
The defatted starch was dispersed in NaOH (1 M) and neutralized with HCl (1 M). The amylose 1-butanol complex is adsorbed on defatted cellulose powder in the solvent system containing acetate buffer (pH 4.8,0.1 M) + urea (2 M) + 1-butanol (8.5%, v/v). The complex adsorbed on cellulose powder is separated by centrifugation (2418 g). The sediment is washed with the solvent system-I to obtain the intermediate fraction. The adsorbed amylose is eluted with urea (2 M) in acetate buffer (pH 4.8, 0.1 M). The amylose, intermediate fraction and amylopectin were precipitated with ethanol, washed free of urea and air dried. They were characterized by determining their blue value and beta -amylolysis limit.  相似文献   
2.
The Indian subcontinent has experienced a major shift in climatic regime from a wet tropical regime to increased seasonal rainfall, since the late Miocene. This shift has been attributed to the intensification of monsoons, which led to opening up of dry habitats in humid forests and formation of deciduous forests. We explored the role of this climatic shift in the origin and diversification of dry‐adapted plant genera Ceropegia and Brachystelma (Ceropegiae, Asclepiadoideae, Apocynaceae). We sampled Ceropegia and Brachystelma from across India and used five markers (two nuclear and three plastid regions) to reconstruct a global phylogeny of this group. Indian members of the tribe Ceropegiae were derived from Africa through at least four independent dispersal events. All dispersal events occurred in late Miocene after establishment of a monsoon climate. One of these early dispersing lineages underwent rapid radiation in peninsular India, giving rise to around 50 species. Thus, both dispersal and diversification events coincided with the intensification of monsoons and concomitant aridification. The role of environment in the evolution of floral characteristics and root type in the Indian radiation is also discussed. This is one of the first reports on a dry‐adapted endemic radiation of plants in India.  相似文献   
3.
An electrochemical biosensor using tyrosinase was constructed for the determination of catechol. The enzyme was extracted from a plant source Amorphophallus companulatus and entrapped in agarose-guar gum composite biopolymer matrix. Catechol was determined by direct reduction of biocatalytically liberated quinone species at -0.1 V versus Ag/AgCl (3M KCl). The response was found to be linear and concentration dependent in the range of 6 x 10(-5) to 8 x 10(-4)M with a lower detection limit of 6 microM. It has reusability up to 20 cycles and a shelf life of more than 2 months when stored at 4 degrees C.  相似文献   
4.
Antioxidant potency of Indian grape cultivars varying in their skin color, seed and polyphenol content (Bangalore blue, Pandhari sahebi, Sharad seedless and Thompson seedless) and their components (whole grapes, pulp with skin and seeds) was examined as 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity using electron spin resonance spectrometry. The total polyphenols in Indian grapes ranged between 3-51%. Extracted polyphenols caused a concentration dependent and significant loss in DPPH radical signal, similar to known antioxidants-Vitamin C, catechin and procyanidin B3 used as references. Among seedless cultivars, polyphenols from Sharad was more potent as antioxidant than Thompson, showing IC50 values of 1250 +/- 30 and 2650 +/- 125 microg/ml, respectively. The inhibitory effect of polyphenols from seedless grape cultivars was as effective as that of seeded variety. The results indicate that polyphenols extracted from Indian grapes/ components (with /without seeds) exhibited free radical scavenging activity and their chemopreventive properties need to be exploited by in vivo model system.  相似文献   
5.
In present studies, the new optical sensing platform based on optical planar waveguide (OPWG) for sucrose estimation was reported. An evanescent-wave biosensor was designed by using novel agarose–guar gum (AG) biopolymer composite sol–gel with entrapped enzymes (acid invertase (INV) and glucose oxidase (GOD)). Partially purified watermelon invertase isolated from Citrullus vulgaris fruit (specific activity 832 units mg−1) in combination with GOD was physically entrapped in AG sol–gel and cladded on the surface of optical planar waveguide. Na+–K+ ion-exchanged glass optical waveguides were prepared and employed for the fabrication of sucrose biosensor. By addressing the enzyme modified waveguide structure with, the optogeometric properties of adsorbed enzyme layer (12 μm) at the sensor solid–liquid interface were studied. The OPWG sensor with short response time (110 s) was characterized using the 0.2 M acetate buffer, pH 5.5. The fabricated sucrose sensor showed concentration dependent linear response in the range 1 × 10−10 to 1 × 10−6 M of sucrose. Lower limit of detection of this novel AG–INV–GOD cladded OPWG sensor was found to be 2.5 × 10−11 M sucrose, which indicates that the developed biosensor has higher sensitivity towards sucrose as compared to earlier reported sensors using various transducer systems. Biochips when stored at room temperature, showed high stability for 81 days with 80% retention of original sensitivity. These sucrose sensing biochips showed good operational efficiency for 10 cycles. The proper confinement of acid invertase and glucose oxidase in hydrogel composite was confirmed by scanning electron microscopy (SEM) images. The constructed OPWG sensor is versatile, easy to fabricate and can be used for sucrose measurements with very high sensitivity.  相似文献   
6.
Seed morphology of Abelmoschus is known to be variable, but patterns of variation have never been critically studied. We studied seed macro‐ and micro‐morphological characters, including seed shape/size, seed coat pattern and trichome density/structure in multiple samples to evaluate the taxonomic significance of seed characters. Among the studied characters, seed shape and trichome structure were found to have major taxonomic importance and proved to be valuable characters for separating taxa. Two main seed types were present: seeds with deciduous trichomes and seeds with persistent trichomes. These characters offer significant evidence to the distinctness of certain species (A. esculentus, A. moschatus subsp. moschatus, A. moschatus subsp. tuberosus, A. crinitus and A. angulosus). Further, our results indicate that A. moschatus subsp. tuberosus should be maintained as a separate subspecies while A. manihot subsp. tetraphyllus var. pungens may be merged in A. angulosus. No significant intraspecific variation was observed, except in A. esculentus. We conclude that seed coat sculpturing and seed trichomes do indeed provide stable and diagnostic characters for many morphologically closely related taxa of Abelmoschus and that LM/SEM techniques can be useful in solving systematic problems and management of Abelmoschus genetic resources.  相似文献   
7.
Nanotechnology is a relatively new branch of science that involves harnessing the unique properties of particles that are nanometers in scale (nanoparticles). Nanoparticles can be engineered in a precise fashion where their size, composition and surface chemistry can be carefully controlled. This enables unprecedented freedom to modify some of the fundamental properties of their cargo, such as solubility, diffusivity, biodistribution, release characteristics and immunogenicity. Since their inception, nanoparticles have been utilized in many areas of science and medicine, including drug delivery, imaging, and cell biology1-4. However, it has not been fully utilized outside of "nanotechnology laboratories" due to perceived technical barrier. In this article, we describe a simple method to synthesize a polymer based nanoparticle platform that has a wide range of potential applications. The first step is to synthesize a diblock co-polymer that has both a hydrophobic domain and hydrophilic domain. Using PLGA and PEG as model polymers, we described a conjugation reaction using EDC/NHS chemistry5 (Fig 1). We also discuss the polymer purification process. The synthesized diblock co-polymer can self-assemble into nanoparticles in the nanoprecipitation process through hydrophobic-hydrophilic interactions.The described polymer nanoparticle is very versatile. The hydrophobic core of the nanoparticle can be utilized to carry poorly soluble drugs for drug delivery experiments6. Furthermore, the nanoparticles can overcome the problem of toxic solvents for poorly soluble molecular biology reagents, such as wortmannin, which requires a solvent like DMSO. However, DMSO can be toxic to cells and interfere with the experiment. These poorly soluble drugs and reagents can be effectively delivered using polymer nanoparticles with minimal toxicity. Polymer nanoparticles can also be loaded with fluorescent dye and utilized for intracellular trafficking studies. Lastly, these polymer nanoparticles can be conjugated to targeting ligands through surface PEG. Such targeted nanoparticles can be utilized to label specific epitopes on or in cells7-10.Download video file.(41M, mov)  相似文献   
8.
9.
10.
The link between loss or defect in functional BRCA1 and predisposition for development of ovarian and breast cancer is well established. Germ-line mutations in BRCA1 are responsible for both hereditary breast and ovarian cancer, which is around 5–10% for all breast and 10–15% of all ovarian cancer cases. However, majority of cases of ovarian cancer are sporadic in nature. The inactivation of cellular BRCA1 due to mutations or loss of heterozygosity is one of the most commonly observed events in such cases. Complement-resistant retroviral BRCA1 vector, MFG-BRCA1, is the only approved gene therapy for ovarian cancer patients by the Federal and Drug Administration. Given the limited available information, there is a need to evaluate the effects of BRCA1 on the global gene expression pattern for better understanding the etiology of the disease. Here, we use Ingenuity Pathway Knowledge Base to examine the differential pattern of global gene expression due to stable expression of BRCA1 in the ovarian cancer cell line, SKOV3. The functional analysis detected at least five major pathways that were significantly (p < 0.05) altered. These include: cell to cell signaling and interaction, cellular function and maintenance, cellular growth and proliferation, cell cycle and DNA replication, and recombination repair. In addition, we were able to detect several biologically relevant genes that are central for various signaling networks involved in cellular homeostasis; TGF-β1, TP53, c-MYC, NF-κB and TNF-α. This report provides a comprehensive rationale for tumor suppressor function(s) of BRCA1 in ovarian carcinogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号