首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1992篇
  免费   152篇
  国内免费   2篇
  2024年   1篇
  2023年   22篇
  2022年   56篇
  2021年   120篇
  2020年   127篇
  2019年   233篇
  2018年   168篇
  2017年   122篇
  2016年   106篇
  2015年   106篇
  2014年   110篇
  2013年   172篇
  2012年   168篇
  2011年   136篇
  2010年   84篇
  2009年   77篇
  2008年   76篇
  2007年   71篇
  2006年   42篇
  2005年   39篇
  2004年   43篇
  2003年   22篇
  2002年   21篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   4篇
  1994年   3篇
  1993年   1篇
  1990年   1篇
  1989年   1篇
  1988年   4篇
  1984年   1篇
排序方式: 共有2146条查询结果,搜索用时 828 毫秒
1.
2.
Islet transplantation has become a promising treatment in the therapy of type 1 diabetes. Its function improvement, after isolation and before transplantation, is crucial because of their loss both in number and function of islets after isolation procedures. Trace elements sodium orthovanadate (SOV) and sodium molybdate (SM), as well as medicinal plant Teucrium polium L. (TP), showed and possessed high beneficial antioxidative potential and even hypoglycemic properties via their effect on islets. We evaluated the effect of these components in combination on cultured islet function in order to improve pancreatic islet transplantation. Rat pancreatic islets were cultured for 24 h then incubated with different concentrations of TP (0.01 and 0.1 mg/mL) alone and in combination with SOV (1 mM) or SM (1 mM). Insulin concentration in buffer media was measured as islet secretory function. Administration of TP (0.01 mg/mL), SM, and SOV alone or in combination with each other significantly increased insulin secretion at high glucose concentration (16.7 mM); insulin secretion was significantly greater in the group containing both TP and SM than other treated groups (p < 0.05). The combination of the mentioned trace elements especially molybdate with TP could improve islet cells function before transplantation.  相似文献   
3.
In this study, the chemical features of dendritic mesoporous silica nanoparticles (DMSNs) provided the opportunity to design a nanostructure with the capability to intelligently transport the payload to the tumor cells. In this regard, doxorubicin (DOX)-encapsulated DMSNs was electrostatically surface-coated with polycarboxylic acid dextran (PCAD) to provide biocompatible dextran-capped DMSNs (PCAD-DMSN@DOX) with controlled pH-dependent drug release. Moreover, a RNA aptamer against a cancer stem cell (CSC) marker, CD133 was covalently attached to the carboxyl groups of DEX to produce a CD133-PCAD-DMSN@DOX. Then, the fabricated nanosystem was utilized to efficiently deliver DOX to CD133+ colorectal cancer cells (HT29). The in vitro evaluation in terms of cellular uptake and cytotoxicity demonstrated that the CD133-PCAD-DMSN@DOX specifically targets HT29 as a CD133 overexpressed cancer cells confirmed by flow cytometry and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay. The potentially promising intelligent-targeted platform suggests that targeted dextran-capped DMSNs may find impressive application in cancer therapy.  相似文献   
4.
Background: Schizophrenia, schizoaffective disorder, and bipolar illness are common psychological disorders with high heritability and variable phenotypes. The disrupted in schizophrenia 1 ( DISC1) gene, on chromosome 1q42, has an essential role in neurite outgrowth and cell signaling. The purpose of this study was to investigate the association of three single-nucleotide polymorphisms (SNPs; rs6675281, rs2255340, and rs2738864) with schizophrenia disorder. These three SNPs were chosen as they had been used in most of the previous studies. Methods: In a case-control study of Iranian population for the first time 778 blood samples were collected including, 402 schizophrenic patients and 376 healthy controls. Genomic DNA was extracted from peripheral blood using DNA extraction kit (BioFlux Co). The genotypes of rs6675281, rs2255340, and rs2738864 were detected by nested allele-specific multiplex polymersae chain reaction (PCR). Results: Our data revealed that the three SNPs are significantly associated with schizophrenia (rs2255349 C>T: confidence interval (CI), 2.115 to 3.268; P = 0.0000 OR: 2.629; rs2738864 C>T: CI, 1.538 to 2.339; P = 0.0000 OR: 1.897; rs6675281 C>T: CI, 2.788 to 4.662; P = 0.0009241 OR: 3.605). Through applying the expectation-maximization (EM) algorithm, we calculated the haplotype frequency, and finally performed haplotype analysis with Bonferroni correction and data preprocessing methods and the results showed rs66875281 to have the highest association. Discussion: Our findings primarily showed that DISC1 gene polymorphisms contribute to schizophrenia risk and have a significant association with this disorder among Iranian population. The strategy was found to be easy, rapid, specific, and consistent for the co-occurring detection of the DISC1 polymorphisms. We could finally confirm that the polymorphisms are related to schizophrenia studied in Iranian population.  相似文献   
5.
6.
The adsorption and immobilisation of human insulin onto the bio-compatible nanosheets including graphene monoxide, silicon carbide and boron nitride nanosheets were studied by molecular dynamics simulation at the temperature of 310 K. After equilibration, heating and 100 ns production molecular dynamic runs, it was found that the insulin was adsorbed and immobilised onto the considered surfaces in a native folded state. The structural parameters, including root-mean-square deviation and fluctuation, surface accessible solvent area, radius of gyration (Rg) and the distance between the centre of the mass of immobilised protein and the surface of the considered nanosheets, were measured, analysed and discussed. The energetics of the studied systems such as the interaction energy between protein and nanosheet was also measured and addressed. The discussions were centred on the structural and energetic parameters of the protein and nanosheets, including charge density, hydrophobicity, hydrophilicity and residue polarity. The results also showed that the active site of C-termini of chain B played an important role in the adsorption process and this could be helpful in the protection of insulin in its smart delivery and release applications.  相似文献   
7.

Plant nutrition management is known as an efficient strategy to control environmental constraints. This experiment was conducted in a climate control greenhouse with a hydroponic system. The high temperature (36 °C?±?1) was imposed on the pots after fruit formation. The studied factors were silicon in 2 concentrations (0 and 4 parts per thousand (ppt)) and salicylic acid in 3 concentrations (0, 0.5, and 1 mM). They were sprayed on cucumber plants 3 times and under high-temperature conditions to evaluate if they can regulate and improve the yield and quality of cucumber fruit under high-temperature conditions or not. The results showed that all treatments significantly improved the nutritional status, total yield, and fruit quality (including marketable yield (i.e., fruits that can be sold due to their good shape) and nitrate content). Under high-temperature conditions, foliar application of silicon had the highest effect on the increase of total yield and marketable fruit yield (respectively, 36.14% and 40.29% increase compared to the control treatment). Micro-nutrients concentrations in the leaf were significantly increased by Si but a reverse status happened for salicylic acid. Under high temperatures, both treatments also significantly decreased the nitrate content of the fresh matter of fruit but silicon was the superior treatment. Silicon and salicylic acid, respectively, had positive effects on mitigation of adverse effects of high temperature on cucumber plants. These findings suggest the use of these treatments under high-temperature conditions in greenhouse cucumber production.

Graphical Abstract

N–No3 content in dry matter of leaf (left) and fresh matter of fruit (right) affected by different treatments. *SaA0–SiA4: 4 ppt Si; SaA0.5–SiA0: 0.5 mM SA; SaA0.5–SiA4: 0.5 mM SA?+?4 ppt Si; SaA1–SiA0: 1 mM SA; SaA1–SiA4: 1 mM SA?+?4 ppt Si; control: without any SA and Si applications. Means in the same column followed by the same letter are not significantly different according to DMRT at (P?≤?0.05)

  相似文献   
8.
9.
Naturally-derived drugs have drawn much attention in recent decades. Efficiency, lower toxicity, and economic reasons are some of their advantages that justify this broad range of administration for different diseases, including cancer. If we can find a specific combination that boosts the effects of their single therapy, leading to synergism effect, increased efficiency, and decreased toxicity, they can act even better. Quercetin and fisetin, two well-known flavonoids, have been used to fight against various cancers. In this study, we investigated their possible synergism quercetin and fisetin on MCF7, MDA-MB-231, BT549, T47D, and 4T1 breast cancer cell lines. Then the optimum combined dose was used to study their impacts on wound healing abilities and clonogenic properties. The real-time qPCR was used to study the expression of their validated downstream effectors in predicted pathways. A significant synergism effect (p < .01, combination index: <1) was observed for all cell lines. Combination therapy was significantly more effective in colony formation (p < .0001) and wound healing assays (p < .001) compared to single therapies. The expression level of potential effectors was also showed a greater change. In vivo study confirmed the in vitro results and showed how significantly (p < .001) their synergism promotes their singular function in inhibiting cancer progression. The breast cancer mouse models receiving combined therapy lived longer with higher average body weight and smaller tumor sizes. These results exhibit that quercetin and fisetin inhibit cancer cell proliferation, migration and colony formation synergistically, and matrix metalloproteinase signaling and apoptotic pathways are relatively responsible for inhibitory activities.  相似文献   
10.
Bone remodelling is mediated by orchestrated communication between osteoclasts and osteoblasts which, in part, is regulated by coupling and anti-coupling factors. Amongst formally known anti-coupling factors, Semaphorin 4D (Sema4D), produced by osteoclasts, plays a key role in downmodulating osteoblastogenesis. Sema4D is produced in both membrane-bound and soluble forms; however, the mechanism responsible for producing sSema4D from osteoclasts is unknown. Sema4D, TACE and MT1-MMP are all expressed on the surface of RANKL-primed osteoclast precursors. However, only Sema4D and TACE were colocalized, not Sema4D and MT1-MMP. When TACE and MT1-MMP were either chemically inhibited or suppressed by siRNA, TACE was found to be more engaged in shedding Sema4D. Anti-TACE-mAb inhibited sSema4D release from osteoclast precursors by ~90%. Supernatant collected from osteoclast precursors (OC-sup) suppressed osteoblastogenesis from MC3T3-E1 cells, as measured by alkaline phosphatase activity, but OC-sup harvested from the osteoclast precursors treated with anti-TACE-mAb restored osteoblastogenesis activity in a manner that compensates for diminished sSema4D. Finally, systemic administration of anti-TACE-mAb downregulated the generation of sSema4D in the mouse model of critical-sized bone defect, whereas local injection of recombinant sSema4D to anti-TACE-mAb-treated defect upregulated local osteoblastogenesis. Therefore, a novel pathway is proposed whereby TACE-mediated shedding of Sema4D expressed on the osteoclast precursors generates functionally active sSema4D to suppress osteoblastogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号