首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   196篇
  免费   10篇
  2022年   2篇
  2020年   2篇
  2016年   2篇
  2015年   4篇
  2014年   5篇
  2013年   5篇
  2012年   5篇
  2011年   4篇
  2010年   4篇
  2009年   6篇
  2008年   8篇
  2007年   7篇
  2006年   7篇
  2005年   5篇
  2004年   8篇
  2003年   2篇
  2002年   7篇
  2001年   10篇
  2000年   5篇
  1999年   8篇
  1998年   10篇
  1997年   2篇
  1996年   3篇
  1995年   7篇
  1994年   2篇
  1993年   6篇
  1992年   9篇
  1991年   3篇
  1990年   5篇
  1989年   5篇
  1988年   1篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   4篇
  1983年   3篇
  1982年   4篇
  1981年   3篇
  1980年   1篇
  1979年   4篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
  1975年   2篇
  1974年   3篇
  1973年   4篇
  1972年   1篇
  1971年   1篇
  1970年   2篇
  1967年   1篇
排序方式: 共有206条查询结果,搜索用时 132 毫秒
1.
We show that the N-terminal leader peptides from the bacterial membrane proteins bacteriorhodopsin and halorhodopsin can be expected to form amphipathic alpha-helics with a highly hydrophobic nonpolar face and a narrow, negatively charged polar face. This finding is discussed in terms of a model for the integration of these proteins into the bacterial membrane.  相似文献   
2.
3.
Immunoglobulins are encoded by a large multigene system that undergoes somatic rearrangement and additional genetic change during the development of immunoglobulin-producing cells. Inducible antibody and antibody-like responses are found in all vertebrates. However, immunoglobulin possessing disulfide-bonded heavy and light chains and domain-type organization has been described only in representatives of the jawed vertebrates. High degrees of nucleotide and predicted amino acid sequence identity are evident when the segmental elements that constitute the immunoglobulin gene loci in phylogenetically divergent vertebrates are compared. However, the organization of gene loci and the manner in which the independent elements recombine (and diversify) vary markedly among different taxa. One striking pattern of gene organization is the "cluster type" that appears to be restricted to the chondrichthyes (cartilaginous fishes) and limits segmental rearrangement to closely linked elements. This type of gene organization is associated with both heavy- and light-chain gene loci. In some cases, the clusters are "joined" or "partially joined" in the germ line, in effect predetermining or partially predetermining, respectively, the encoded specificities (the assumption being that these are expressed) of the individual loci. By relating the sequences of transcribed gene products to their respective germ-line genes, it is evident that, in some cases, joined-type genes are expressed. This raises a question about the existence and/or nature of allelic exclusion in these species. The extensive variation in gene organization found throughout the vertebrate species may relate directly to the role of intersegmental (V<==>D<==>J) distances in the commitment of the individual antibody-producing cell to a particular genetic specificity. Thus, the evolution of this locus, perhaps more so than that of others, may reflect the interrelationships between genetic organization and function.   相似文献   
4.
5.
In this paper analyses are made of the thermodynamic and geometric properties of the predicted association between amphipathic helixes and phospholipid vesicles. From thermodynamic considerations it is proposed that a major driving force for such an association is the negative free energy gained by the transfer of a number of hydrophobic residues (contained within the non-polar faces of amphipathic helixes), from water to the interior of a phospholipid bilayer. The mechanism proposed is that in the aqueous state a potentially amphipathic sequence forms a non-helical hydrophobic patch on the surface of the apolipoprotein. Formation of an amphipathic helix and simultaneous burial of the hydrophobic residues in the surface of a phospholipid bilayer provides the driving force for lipid association. From this model an estimate of the upperlimit for the hydrophobically driven free energy of lipid association (?40?65 kcal/mol) is calculated for the 4 apolipoproteins with known sequences.On the basis of geometrical considerations a model for an intermediate state of high density lipoprotein (HDL) synthesis is proposed. This model consists of a cholesterol-containing phospholipid bilayer disc whose ‘naked’ hydrophobic edges are shielded from the aqueous phase by amphipathic helixes of the apolipoproteins. Exposure of these ‘bicycle tire’ micelles to the enzyme lecithin: cholesterol acyl transferase (LCAT) is postulated to result in the formation of mature spherical HDL particles with cholesteryl ester forming a neutral lipid core.  相似文献   
6.
A method has been developed for the rapid separation of cells in suspension from non-cell associated lipid vesicles in various assays for vesicle-cell interaction. Separation is achieved on a discontinuous Ficoll-Paque gradient. Cells and free vesicles are totally separated, as evidenced by both radiolabelled vesicles, and vesicles containing the fluorescent dye 6-carboxyfluorescein. The main advantages of this method are the rapidity, efficacy, and gentleness of the separation. Viability of the cells remains consistently high (greater than 96%) throughout the separation. Since this method involves a one-step centrifugation, it precludes the necessity for repeated washings of cells which have been incubated with lipid vesicles.  相似文献   
7.
Neutrophils participate in the acute phase response and are often associated with tissue injury in a number of inflammatory disorders. The acute phase response is accompanied by alterations in the metabolism of apolipoprotein A-I and high density lipoprotein (HDL). Structural considerations led to studies investigating the effect of purified HDL and apolipoprotein A-I on neutrophil degranulation and superoxide production. Apolipoprotein A-I but not HDL inhibited IgG-induced neutrophil activation by about 60% as measured by degranulation and superoxide production. This suggests that the lipid-associating amphipathic helical domains of apolipoprotein A-I mediate this effect. In support of this was finding inhibitory effects with two synthetic model lipid-associating amphipathic helix peptide analogs. Apolipoprotein A-I, containing tandem repeating amphipathic helical domains, was approximately ten times more effective than the two peptide analogs and inhibited neutrophil activation at well below physiologic concentrations. Competitive binding studies indicate that resting neutrophils have approximately 190,000 (Kd = 1.7 x 10(-7)) binding sites per cell for apolipoprotein A-I, consistent with a ligand-receptor interaction. These observations suggest that apolipoprotein A-I may play an important role in regulating neutrophil function during the inflammatory response.  相似文献   
8.
Human erythrocyte glycophorin is one of the best characterized integral membrane proteins. Reconstitution of the membrane-spanning hydrophobic segment of glycophorin (the tryptic insoluble peptide released when glycophorin is treated with trypsin) with liposomes results in the production of freeze-fracture intrabilayer particles of 80 Å diameter (Segrest, J.P., Gulik-Krzywicki, T. and Sardet, C. (1974) Proc. Natl. Acad. Sci. U.S.A. 71, 3294–3298), with particles appearing at or above a tryptic insoluble peptide concentration of 4 mmol per mol phosphatidylcholine. In the present study, increasing concentrations of tryptic insoluble peptide were added to sonicated small unilamellar egg phosphatidylcholine vesicles and the rate of efflux of 22Na+ was examined by rapid (30 s) gel filtration on Sephadex G-50. Below a concentation of 3–5 mmol tryptic insoluble peptide/mol phosphatidylcholine, 22Na+ efflux occurs at a constant slow rate at given tryptic insoluble peptide concentrations. Above a concentration of 3–5 mM, the rate of efflux is biphasic at given tryptic insoluble peptide concentrations, exhibiting both an initial fast and a subsequent slow component. On the basis of graphic and computer curve-fitting analysis, with increasing tryptic insoluble peptide concentration, the rate of the slow component reaches a plateau at a tryptic insoluble peptide concentration of 3–5 mM and remains essentially constant until much higher concentrations are reached; the fast component increases linearly with increasing tryptic insoluble peptide concentration well beyond 5 mM. The most consistent interpretation of this data is as follows. The slow 22Na+ efflux component is due to perturbations of small unilamellar vesicle integrity by tryptic insoluble peptide monomers. At a tryptic insoluble peptide concentration of 3–5 mmol/mol, a critical concentration is reached following which there is intrabilayer tryptic insoluble peptide self-association. The fast 22Na+ efflux component is due to the increasing presence of tryptic insoluble peptide self-associated multimers the 80-Å particles seen by freeze-fracture electron microscopy) which results in a significantly larger bilayer defect than do tryptic insoluble peptide monomers. The failure of complete saturation of efflux by the fast component is ascribed to the presence of two populations of small unilamellar vesicles, some of which contain tryptic insoluble peptide multimers and some of which do not.Addition of cholesterol to the tryptic insoluble peptide/phosphatidylcholine vesicles decreases the rate of 22Na+ efflux by inhibiting primarily the fast component. Freeze-fracture electron microscopy indicates that the presence of cholesterol has no effect on the size, number or distribution of 80-Å intra-bilayer particles in the tryptic insoluble peptide/phosphatidylcholine vesicles. These results are consistent with a mechanism to explain the fast Na+ efflux component involving protein-lipid boundary perturbations.Efflux of 45Ca2+ from phosphatidylcholine vesicles is also enhanced by incorporation of tryptic insoluble peptide, but only if divalent cations (Ca2+ or Mg2+) are present in the external bathing media as well as inside the sonicated vesicles. If monovalent Na+ only is present in the bathing media no 45Ca2+ efflux is seen. Under conditions where 45Ca2+ efflux is seen, both a fast and a slow component are present, although both appear lower than corresponding rate constants for 22Na+ efflux. These results suggest a coordinated mechanism for ion efflux induced by tryptic insoluble peptide and, together with the 22Na+ efflux studies, may have mechanistic implications for the transbilayer phospholipid exchange (flip-flop) suggesed to be induced at glycophorin/phospholipid interfaces (de Kruiff, B., van Zoelen, E.J.J. and van Deenen, L.L.M. (1978) Biochim. Biophys. Acta 509, 537–542).  相似文献   
9.
10.
Several synthetic class A peptide analogues have been shown to mimic many of the properties of human apo A-I in vitro. A new peptide [acetyl-(AspTrpLeuLysAlaPheTyrAspLysValPheGluLysPheLysGluPhePhe)-NH2; 5F], with increased amphipathicity, was administered by intraperitoneal injection, 20 microg/day for 16 weeks, to C57BL/6J mice fed an atherogenic diet. Mouse apo A-I (MoA-I) (50 microg/day) or phosphate-buffered saline (PBS) injections were given to other mice as controls. Total plasma cholesterol levels and lipoprotein profiles were not significantly different between the treated and control groups, except that the mice receiving 5F or MoA-I had lower high density lipoprotein (HDL) cholesterol when calculated as a percentage of total cholesterol. No toxicity or production of antibodies to the injected materials was observed. When HDL was isolated from high fat diet-administered mice injected with 5F and presented to human artery wall cells in vitro together with human low density lipoprotein (LDL), there were substantially fewer lipid hydroperoxides formed and substantially less LDL-induced monocyte chemotactic activity than with HDL from PBS-injected animals. Injection of human apo A-I produced effects similar to 5F on lipid peroxide formation and LDL-induced monocyte chemotactic activity, but injection of MoA-I was significantly less effective in reducing lipid hydroperoxide formation or lowering LDL-induced monocyte chemotactic activity. Mice receiving peptide 5F had significantly less aortic atherosclerotic lesion area compared with mice receiving PBS, whereas lesion area in mice receiving MoA-I was similar to that of the PBS-injected animals. This is the first in vivo demonstration that a model class A amphipathic helical peptide has antiatherosclerotic properties. We conclude that 5F inhibits lesion formation in high fat diet-administered mice by a mechanism that does not involve changes in the lipoprotein profile, and may have potential in the prevention and treatment of atherosclerosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号