首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   6篇
  2016年   2篇
  2015年   2篇
  2014年   4篇
  2013年   3篇
  2012年   5篇
  2011年   4篇
  2010年   4篇
  2009年   2篇
  2008年   3篇
  2007年   4篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   4篇
  1999年   4篇
  1998年   2篇
  1992年   1篇
  1990年   1篇
排序方式: 共有50条查询结果,搜索用时 171 毫秒
1.
Pattern recognition receptors (PRRs) play a key role in plant and animal innate immunity. PRR binding of their cognate ligand triggers a signaling network and activates an immune response. Activation of PRR signaling must be controlled prior to ligand binding to prevent spurious signaling and immune activation. Flagellin perception in Arabidopsis through FLAGELLIN‐SENSITIVE 2 (FLS2) induces the activation of mitogen‐activated protein kinases (MAPKs) and immunity. However, the precise molecular mechanism that connects activated FLS2 to downstream MAPK cascades remains unknown. Here, we report the identification of a differentially phosphorylated MAP kinase kinase kinase that also interacts with FLS2. Using targeted proteomics and functional analysis, we show that MKKK7 negatively regulates flagellin‐triggered signaling and basal immunity and this requires phosphorylation of MKKK7 on specific serine residues. MKKK7 attenuates MPK6 activity and defense gene expression. Moreover, MKKK7 suppresses the reactive oxygen species burst downstream of FLS2, suggesting that MKKK7‐mediated attenuation of FLS2 signaling occurs through direct modulation of the FLS2 complex.  相似文献   
2.
3.
4.
5.
The cellular response to environmental stimuli requires biochemical information processing through which sensory inputs and cellular status are integrated and translated into appropriate responses by way of interacting networks of enzymes. One such network, the mitogen-activated protein (MAP) kinase cascade is a highly conserved signal transduction module that propagates signals from cell surface receptors to various cytosolic and nuclear targets by way of a phosphorylation cascade. We have investigated the potential for signal processing within a network of interacting feed-forward kinase cascades typified by the MAP kinase cascade. A genetic algorithm was used to search for sets of kinetic parameters demonstrating representative key input-output patterns of interest. We discuss two of the networks identified in our study, one implementing the exclusive-or function (XOR) and another implementing what we refer to as an in-band detector (IBD) or two-sided threshold. These examples confirm the potential for logic and amplitude-dependent signal processing in interacting MAP kinase cascades demonstrating limited cross-talk. Specifically, the XOR function allows the network to respond to either one, but not both signals simultaneously, while the IBD permits the network to respond exclusively to signals within a given range of strength, and to suppress signals below as well as above this range. The solution to the XOR problem is interesting in that it requires only two interacting pathways, crosstalk at only one layer, and no feedback or explicit inhibition. These types of responses are not only biologically relevant but constitute signal processing modules that can be combined to create other logical functions and that, in contrast to amplification, cannot be achieved with a single cascade or with two non-interacting cascades. Our computational results revealed surprising similarities between experimental data describing the JNK/MKK4/MKK7 pathway and the solution for the IBD that evolved from the genetic algorithm. The evolved IBD not only exhibited the required non-monotonic signal strength-response, but also demonstrated transient and sustained responses that properly reflected the input signal strength, dependence on both of the MAPKKs for signaling, phosphorylation site preferences by each of the MAPKKs, and both activation and inhibition resulting from the overexpression of one of the MAPKKs.  相似文献   
6.
Executive functions are processes that act in harmony to control behaviors necessary for maintaining focus and achieving outcomes. Executive dysfunction in neuropsychiatric disorders is attributed to structural or functional pathology of brain networks involving prefrontal cortex (PFC) and its connections with other brain regions. The PFC receives innervations from different neurons associated with a number of neurotransmitters, especially dopamine (DA). Here we review findings on the contribution of PFC DA to higher-order cognitive and emotional behaviors. We suggest that examination of multifactorial interactions of an individual's genetic history, along with environmental risk factors, can assist in the characterization of executive functioning for that individual. Based upon the results of genetic studies, we also propose genetic mapping as a probable diagnostic tool serving as a therapeutic adjunct for augmenting executive functioning capabilities. We conclude that preservation of the neurological underpinnings of executive functions requires the integrity of complex neural systems including the influence of specific genes and associated polymorphisms to provide adequate neurotransmission.  相似文献   
7.
Arabidopsis thaliana grows efficiently on GABA as the sole nitrogen source, thereby providing evidence for the existence of GABA transporters in plants. Heterologous complementation of a GABA uptake-deficient yeast mutant identified two previously known plant amino acid transporters, AAP3 and ProT2, as GABA transporters with Michaelis constants of 12.9 +/- 1.7 and 1.7 +/- 0.3 mM at pH 4, respectively. The simultaneous transport of [1-14C]GABA and [2,3-3H]proline by ProT2 as a function of pH, provided evidence that the zwitterionic state of GABA is an important parameter in substrate recognition. ProT2-mediated [1-14C]GABA transport was inhibited by proline and quaternary ammonium compounds.  相似文献   
8.
California sea lions (Zalophus californianus) in otherwise good nutritional condition have been consistently affected by the marine biotoxin domoic acid since the late 1990s. In this study we evaluated the temporal and spatial stranding patterns of suspected and confirmed cases of domoic acid intoxicated sea lions from 1998 to 2006, using records of strandings along the California coast obtained from members of the California Marine Mammal Stranding Network. The majority of domoic acid cases were adult females (47%–82% of the total annual domoic acid cases), a contrast to strandings that were not related to domoic acid, which were generally dominated by juveniles and pups. Exposure to this biotoxin led to a 6.67‐fold increase in adult female strandings in 2000, and a 5.44‐fold increase in adult female deaths in 2006, relative to strandings and deaths of adult female not affected by domoic acid. Domoic acid cases have occurred annually since 1998 (except for 1999) between April and August, with clusters centered primarily at Pismo Beach (San Luis Obispo County), as well as at other beaches in San Luis Obispo, Monterey, Santa Cruz, Santa Barbara, Orange, and San Diego counties. The larger ecological and population level implications of increased domoic acid strandings and deaths, particularly among adult female sea lions, warrant further attention and need to be investigated.  相似文献   
9.
The TRH secretory responsiveness of the pancreatic islet cell clusters from newborn rat in organ culture was studied. Basal TRH secretion was stable over a 9-day period. The response to various secretagogues was tested on day 4. TRH secretion was stimulated by high potassium-induced depolarization and also through both cAMP and protein kinase-C dependent pathways. Like insulin, TRH release was stimulated by glucose and arginine and inhibited by somatostatin. These data suggest the existence of a common mechanism for TRH and insulin secretion by the pancreatic β-cells.  相似文献   
10.
Schwacke JH  Voit EO 《Proteomics》2007,7(6):890-899
Modern proteomic techniques are making it possible to identify and quantitate increasingly complex mixtures of cellular proteins. Translating the relative expression measurements collected in these experiments into an understanding of the associated physiological phenomena continues to be a challenge for the field of systems biology. We demonstrate how methods of mathematical and computational systems biology permit us to proffer explanations for the observed concentration ranges of signaling components found in the highly conserved mitogen-activated protein kinase (MAPK) cascade. The analysis demonstrates that alterations in the naturally occurring MAPK and MAPK kinase (MAPKK) concentrations would negatively affect the efficiency of short-term responses of the cascade. Thus, while there seems to be no a priori rationale for particular features of the involved kinases, the observed ranges of their characteristic parameters appear to be far from coincidental. This result is deduced from the first principles of mass action kinetics and holds for wide variations in MAPKK kinase (MAPKKK) concentrations, differential preference for unphosphorylated and monophosphorylated forms of kinase substrates, and for cases where the monophosphorylated MAPKK exhibits kinase activity. The results demonstrate how theoretical systems biology complements molecular biology by providing specific rationale for observed natural designs in a fashion hardly achievable with experimentation alone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号