首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   11篇
  2024年   1篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   3篇
  2016年   2篇
  2015年   1篇
  2014年   4篇
  2013年   5篇
  2012年   8篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2008年   4篇
  2007年   9篇
  2006年   5篇
  2005年   9篇
  2004年   7篇
  2003年   7篇
  2002年   5篇
  2001年   3篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1992年   2篇
  1991年   1篇
  1990年   4篇
  1988年   2篇
  1987年   1篇
  1981年   1篇
  1978年   3篇
  1973年   2篇
排序方式: 共有109条查询结果,搜索用时 156 毫秒
1.
The effect of the serotonin precursor 5-hydroxytryptophan (5-HTP) on jejunal migrating myoelectric complexes (MMCs) was investigated in conscious rats. Subcutaneous administration of low doses of 5-HTP (1-2 mg/kg) shortened the period between migrating complexes, whereas high doses of the compound (4-8 mg/kg) disrupted the MMC pattern. The serotonin (5-HT2) antagonist methysergide (8 mg/kg s.c.) did not alter basal MMC, neither did it prevent the effect of a low dose of 5-HTP; conversely, it antagonized the disruption due to the high dose. The 5-HT3 antagonist ICS 205-930 (30 micrograms/kg s.c.) decreased MMC frequency; administration of 2 mg/kg 5-HTP following ICS 205-930 brought the frequency of myoelectric complexes back to basal values. Both effects of 5-HTP were prevented by the decarboxylase inhibitor benserazide (85 mg/kg i.p.), which per se caused a transient inhibition of spiking activity. The results suggest that rat MMCs can be influenced in a composite fashion by progressively increasing concentrations of 5-HT, which in turn activate different receptor subtypes. A peripheral neuronal receptor, probably belonging to the 5-HT3 subclass, mediates the increase in MMC frequency observed after low doses of 5-HTP; higher levels of serotonin activate 5-HT2 receptors, causing disruption of cycling activity. Additionally, 5-HT3 receptors, but not 5-HT2, appear to be relevant for the regulation of the MMC pattern by the endogenous amine.  相似文献   
2.
The extent to which regions of a somatic embryo were committed to a particular developmental fate was explored by surgically removing portions of somatic embryos and observing patterns of regeneration. Through a variety of excisions that resulted in tissue slices ranging from less than 10% to nearly 90% of the original embryo mass, we observed only a few cases where such isolates completely abandoned preexisting patterns of organized growth. Instead, most subcultured portions of the embryonic axis restored all, or part of, a missing complement of the organism. At the shoot apex, a single lost cotyledon was replaced by new cotyledonary structures, although these usually occurred as multiple pairs of cotyledons. If both cotyledons were removed, secondary axes, each with its own cotyledons, typically formed at the embryo midlength. When embryos were divided into shoot and root pieces, the shoot pole usually regenerated a new root, while the original root and rapidly elongated and matured days earlier than uncut controls. Surprisingly, cotyledon regeneration from excised root sections occurred at much greater frequency when the root piece comprised only 10-25% of the embryo mass; larger portions of the root pole rarely produced recognizable shoot structures. These studies indicate that several discrete regions of the embryo are committed to specific types of patterned growth, and that continuity between certain of these regions is required for the maintenance of axial polarity.  相似文献   
3.
Pattern recognition receptors (PRRs) play a key role in plant and animal innate immunity. PRR binding of their cognate ligand triggers a signaling network and activates an immune response. Activation of PRR signaling must be controlled prior to ligand binding to prevent spurious signaling and immune activation. Flagellin perception in Arabidopsis through FLAGELLIN‐SENSITIVE 2 (FLS2) induces the activation of mitogen‐activated protein kinases (MAPKs) and immunity. However, the precise molecular mechanism that connects activated FLS2 to downstream MAPK cascades remains unknown. Here, we report the identification of a differentially phosphorylated MAP kinase kinase kinase that also interacts with FLS2. Using targeted proteomics and functional analysis, we show that MKKK7 negatively regulates flagellin‐triggered signaling and basal immunity and this requires phosphorylation of MKKK7 on specific serine residues. MKKK7 attenuates MPK6 activity and defense gene expression. Moreover, MKKK7 suppresses the reactive oxygen species burst downstream of FLS2, suggesting that MKKK7‐mediated attenuation of FLS2 signaling occurs through direct modulation of the FLS2 complex.  相似文献   
4.
5.
The goal of the present study was to evaluate the changes in the cell type composition and ATPase activities (total ATPase, ouabain-sensitive Na+/K(+)-ATPase, furosemide-sensitive Na(+)-ATPase) that occur during the different stages of the moulting cycle in the hepatopancreas of the Marsupenaeus japonicus. The results clearly suggest that the number of resorptive and fibrillar cell types changes significantly during the different stages. An inverse correlation between resorptive and fibrillar cells is observed during moulting (both in normally fed and fasted animals). Fasting, but not the moulting cycle, affects the number of blister-like cells. In the resorptive cells the enzymatic activities (total ATPases and ouabain-sensitive Na+/K(+)-ATPase) also change during the moulting in a cyclical manner. All these results are in agreement with and confirm the different functions carried out by the two cell types within the hepatopancreas.  相似文献   
6.
Ribosomes stalled on problematic mRNAs in bacterial cells can be rescued by transfer-messenger RNA (tmRNA), its helper protein (small protein B, SmpB), and elongation factor Tu (EF-Tu) through a mechanism called trans-translation. In this work we used lead(II) footprinting to probe the interactions of tmRNA with SmpB and other components of the translation machinery at different steps of the trans-translation cycle. Ribosomes with a short nascent peptide stalled on a truncated mRNA were reacted with Ala-tmRNA*EF-Tu*GTP, SmpB, and other translation components to initiate and execute trans-translation. Free tmRNA was probed with lead(II) acetate with and without SmpB, and ribosome bound tmRNA was probed in one of four different trans-translation states stabilized by antibiotic addition or selective exclusion of translation components. For comparison, we also analyzed lead(II) cleavage patterns of tmRNA in vivo in a wild-type as well as in an SmpB-deficient Escherichia coli strain. We observed some specific cleavages/protections in tmRNA for the individual steps of trans-translation, but the overall tmRNA conformation appeared to be similar in the stages analyzed. Our findings suggest that, in vivo, a dominant fraction of tmRNA is in complex with SmpB and that, in vitro, SmpB remains tmRNA bound at the initial steps of trans-translation.  相似文献   
7.
Curative properties of some medicinal plants such as the Feijoa sellowiana Bert. (Myrtaceae), have been often claimed, although the corresponding molecular mechanism(s) remain elusive. We report here that the Feijoa acetonic extract exerts anti-cancer activities on solid and hematological cancer cells. Feijoa extract did not show toxic effects on normal myeloid progenitors thus displaying a tumor-selective activity. In the Feijoa acetonic extract, fractionation and subsequent purification and analyses identified Flavone as the active component. Flavone induces apoptosis which is accompanied by caspase activation and p16, p21 and TRAIL over-expression in human myeloid leukemia cells. Use of ex vivo myeloid leukemia patients blasts confirms that both the full acetonic Feijoa extract and its derived Flavone are able to induce apoptosis. In both cell lines and myeloid leukemia patients blasts the apoptotic activity of Feijoa extract and Flavone is accompanied by increase of histone and non-histone acetylation levels and by HDAC inhibition. Our findings show for the first time that the Feijoa apoptotic active principle is the Flavone and that this activity correlates with the induction of HDAC inhibition, supporting the hypothesis of its epigenetic pro-apoptotic regulation in cancer systems.  相似文献   
8.
9.
10.
Executive functions are processes that act in harmony to control behaviors necessary for maintaining focus and achieving outcomes. Executive dysfunction in neuropsychiatric disorders is attributed to structural or functional pathology of brain networks involving prefrontal cortex (PFC) and its connections with other brain regions. The PFC receives innervations from different neurons associated with a number of neurotransmitters, especially dopamine (DA). Here we review findings on the contribution of PFC DA to higher-order cognitive and emotional behaviors. We suggest that examination of multifactorial interactions of an individual's genetic history, along with environmental risk factors, can assist in the characterization of executive functioning for that individual. Based upon the results of genetic studies, we also propose genetic mapping as a probable diagnostic tool serving as a therapeutic adjunct for augmenting executive functioning capabilities. We conclude that preservation of the neurological underpinnings of executive functions requires the integrity of complex neural systems including the influence of specific genes and associated polymorphisms to provide adequate neurotransmission.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号