首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2000年   3篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
排序方式: 共有29条查询结果,搜索用时 109 毫秒
1.
We wanted to assess whether B-cell and/or T-cell responses to collagen and thereby the course of collagen-induced arthritis could be suppressed by regulatory mechanisms associated with oral tolerance to an unrelated protein. DBA/1 mice were fed ovalbumin (OVA)-containing pellets ad libitum for 1 week and subsequently coimmunized twice, with a mixture of bovine collagen type II (BCII) and OVA in Freund's complete adjuvant. Mice fed OVA before coimmunization with BCII and OVA had significantly lower arthritic scores than mice immunized with BCII only. Their body weight increased during the study period and their anti-BCII antibody activity was significantly IgG2a lower. The frequency of spleen cells producing IgG anti-BCII antibody was also reduced. Coimmunization per se slightly ameliorated the development of arthritis, resulting in an early, transient reduction. It resulted in significantly higher IgG1 anti-BCII antibody activity and increased splenocyte secretion of IFN-γ and IL-10 in response to BCII. Our findings demonstrate that OVA-specific regulatory events induced by feeding OVA, i.e. bystander suppression, reduced the severity of arthritis in animals immunized with BCII and OVA. Anti-BCII specific antibody responses and cytokine secretion by types 1 and 2 T helper cells were also decreased.  相似文献   
2.
The B30.2 domain is a conserved region of around 170 amino acids associated with several different protein domains, including the immunoglobulin folds of butyrophilin and the RING finger domain of ret finger protein. We recently reported several novel members of this family as well as previously undescribed protein families possessing the B30.2 domain. Many proteins have subsequently been found to possess this domain, including pyrin/marenostrin and the midline 1 (MID1) protein. Mutations in the B30.2 domain of pyrin/marenostrin are implicated in familial Mediterranean fever, and partial loss of the B30.2 domain of MID1 is responsible for Opitz G/BBB syndrome, characterized by developmental midline defects. In this study, we scrutinized the available sequence data bases for the identification of novel B30.2 domain proteins using highly sensitive database-searching tools. In addition, we discuss the chromosomal localization of genes in the B30.2 family, since the encoded proteins are likely to be involved in other forms of periodic fever, autoimmune, and genetic diseases.   相似文献   
3.
A key endothelial receptor in leukocyte-endothelial cell (EC) interactions is ICAM-1. ICAM-1 is constitutively expressed at low levels on vascular ECs, and its levels significantly increase following stimulation with many proinflammatory agents. This study provides evidence that in inflamed arterioles of anesthetized mice (65 mg/kg ip Nembutal), ICAM-1 mediates leukocyte rolling, in contrast to its expected role of mediating firm adhesion in venules. The number of leukocytes rolling on arteriolar ECs is decreased in ICAM-1 knockout (KO) compared with wild-type (WT) mice (KO, 6.0 +/- 0.9; WT, 12.0 +/- 1.0 leukocytes/40 s; P < 0.05), whereas the leukocyte-rolling number in venules remains unaffected (KO, 5.6 +/- 0.9; WT, 7.0 +/- 0.7 leukocytes/40 s; n = 13-15 sites). We also show that the fraction of leukocytes that is rolling on arteriolar ECs does so with a higher characteristic velocity (>70 microm/s), and, furthermore, that the distance over which rolling contacts with the arteriolar wall are maintained is ICAM-1 dependent. In ICAM-1 KO animals or in WT mice in the presence of ICAM-1-blocking antibody, leukocytes rolled significantly shorter distances over the sampled 200-microm vessel length compared with WT (68 +/- 6.7 and 55 +/- 9.4 vs. 85 +/- 12.9% total, respectively, n = 4 sites, P < 0.05). We also found evidence that in ICAM-1 KO mice, a significant fraction of leukocyte rolling and adhesive interactions with arteriolar ECs could be accounted for by upregulation of another adhesion molecule, VCAM-1, providing an important illustration of how expression of related proteins can be altered following genetic ablatement of a target molecule (in this case ICAM-1).  相似文献   
4.
Yj Xu  Z Xi  Ys Zhen  IH Goldberg 《Biochemistry》1997,36(48):14975-14984
The potent enediyne antitumor antibiotic C1027 has been previously reported to induce novel DNA interstrand cross-links and drug monoadducts under anaerobic conditions [Xu et al. (1997) J. Am. Chem. Soc. 119, 1133-1134]. In the present study, we explored the mechanism of formation of these anaerobic DNA lesions. We found that, similar to the aerobic reaction, the diradical species of the activated drug initiates anaerobic DNA damage by abstracting hydrogen atoms from the C4', C1', and C5' positions of the A1, A2, and A3 nucleotides, respectively, in the most preferred 5'GTTA1T/5'ATA2A3C binding sequence. It is proposed that the newly generated deoxyribosyl radicals, which cannot undergo oxidation, likely add back onto the nearby unsaturated ring system of the postactivated enediyne core, inducing the formation of interstrand cross-links, connecting either A1 to A2 or A1 to A3, or drug monoadducts mainly on A2 or A3. Comparative studies with other enediynes, such as neocarzinostatin and calicheamicin gamma1I under similar reaction conditions indicate that the anaerobic reaction process is a kinetically competitive one, depending on the proximity of the drug unsaturated ring system or dioxygen to the sugar radicals and their quenching by other hydrogen sources such as solvent or thiols. It was found that C1027 mainly generates interstrand cross-links, whereas most of the anaerobic lesions produced by neocarzinostatin are drug monoadducts. Calicheamicin gamma1I was found to be less efficient in producing both lesions. The anaerobic DNA lesions induced by enediyne antitumor antibiotics may have important implications for their potent cytotoxicity in the central regions of large tumors, where relative anaerobic conditions prevail.  相似文献   
5.
Frame, Mary D. S., and Ingrid H. Sarelius. Endothelialcell dilatory pathways link flow and wall shear stress in an intactarteriolar network. J. Appl. Physiol.81(5): 2105-2114, 1996.Our purpose was to determine whether theendothelial cell-dependent dilatory pathways contribute to theregulation of flow distribution in an intact arteriolar network. Cellflow, wall shear stress (T),diameter, and bifurcation angle were determined for four sequentialbranches of a transverse arteriole in the superfused cremaster muscleof pentobaribtal sodium (Nembutal, 70 mg/kg)-anesthetized hamsters(n = 51). Control cell flow wassignificantly greater into upstream than into downstream branches[1,561 ± 315 vs. 971 ± 200 (SE) cells/s,n = 12]. Tissue exposure to 50 µMN-nitro-L-arginine + 50 µM indomethacin (L-NNA + Indo) produced arteriolar constriction of 14 ± 4% and decreasedflow into the transverse arteriole. More of the available cell flow wasdiverted to downstream branches, yet flow distribution remainedunequal. Control T was higherupstream than downstream (31.3 ± 6.8 vs. 9.8 ± 1.5 dyn/cm2).L-NNA + Indo decreasedT upstream and increasedT downstream to become equal inall branches, in contrast to flow. To determine whether constriction ingeneral induced the same changes, 5%O2 (8 ± 4% constriction) or109 M norepinephrine (NE;4 ± 3% constriction) was added to the tissue (n = 7). WithO2, flow was redistributed tobecome equal into each branch. With NE, flow decreased progressivelymore into the first three branches. The changes in flow distributionwere thus predictable and dependent on the agonist. WithO2 or NE, the spatial changes inflow were mirrored by spatial changes inT. Changes in diameter and incell flux were not related forL-NNA + Indo (r = 0.45),O2(r = 0.07), or NE(r = 0.36). For all agonists, when thebifurcation angle increased, cell flow to the branch decreasedsignificantly, whereas if the angle decreased, flow was relativelypreserved; thus active changes in bifurcation angle may influence redcell distribution at arteriolar bifurcations. Thus, when theendothelial cell dilatory pathways were blocked, the changes in flowand in T were uncoupled; yet when they were intact, flowand T changed together.

  相似文献   
6.
In microvessels, acute inflammation is typified by an increase in leukocyte-endothelial cell interactions, culminating in leukocyte transmigration into the tissue, and increased permeability to water and solutes, resulting in tissue edema. The goal of this study was to establish a method to quantify solute permeability (P(s)) changes in microvessels in intact predominantly blood-perfused networks in which leukocyte transmigratory behavior could be precisely described using established paradigms. We used intravital confocal microscopy to measure solute (BSA) flux across microvessel walls, hence P(s). A quantitative fluorescence approach (Huxley VH, Curry FE, and Adamson RH. Am J Physiol Heart Circ Physiol 252: H188-H197, 1987) was adapted to the imaged confocal tissue slice in which the fluorescent source volume and source surface area of the microvessel were restricted to the region of vessel that was contained within the imaged confocal tissue section. P(s) measurements were made in intact cremaster muscle microvasculature of anesthetized mice and compared with measurements of P(s) made in isolated rat skeletal muscle microvessels. Mouse arteriolar P(s) was 9.9 +/- 1.1 x 10(-7) cm/s (n = 16), which was not different from 8.4 +/- 1.3 x 10(-7) cm/s (n = 6) in rat arterioles. Values in venules were significantly (P < 0.05) higher: 44.4 +/- 7.9 x 10(-7) cm/s (n = 14) in mice and 25.0 +/- 3.7 x 10(-7) cm/s in rats. Convective coupling was estimated to contribute <10% to the measured P(s) in both microvessel types and both animal models. We conclude that this approach provides an appropriate quantification of P(s) in the intact microvasculature and that arteriolar P(s), while lower than in venules, is nevertheless consistent with arterioles being a significant source of interstitial protein.  相似文献   
7.
8.
Intracellular Ca2+ transients were identified in endothelial cells (ECs) in intact blood-perfused arterioles. ECs in cremaster muscle arterioles (diameter approximately 45 microm) in anesthetized mice were loaded with the Ca2+ indicator fluo 4-AM by intraluminal perfusion, after which blood flow was reestablished. Confocal microscopy was used to visualize Ca2+ as a function of fluo-4 intensity in real time. Separate sets of experiments were performed under the following conditions: control, ischemia, during inhibition of P(2x) or P(1) purinoreceptors, and with the application of exogenous adenosine. In controls, spontaneous EC Ca2+ transients displayed a wide range of activity frequency (1-32 events/min) and about one-third of these transient events were synchronized between adjacent ECs. The increase in Ca2+ remained localized and did not spread to encompass the entire cell body. Ca2+ transient activity decreased significantly with ischemia (from 9.9 +/- 0.6 to 3.1 +/- 0.3 events/min, n = 135) but was unaffected by P(2x) or P(1) receptor inhibition. Exogenous adenosine significantly increased the frequency of Ca2+ transients (to 12.8 +/- 0.9 events/min) and increased synchronization so that 50% of all Ca2+ events were synchronized between ECs. This response to adenosine was not due to an increase in shear stress. These data indicate that localized Ca2+ transients are sensitive to flow conditions and, separately, to metabolically active pathways (exogenous adenosine), although the basal activity occurs independently of P(2x) or P(1) receptors. These transients may represent a mechanism by which individual EC responses are integrated to result in coordinated arteriolar responses in situ.  相似文献   
9.
In hamster cremaster muscle, it has been shown previously that contraction of skeletal muscle fibers underlying small groups of capillaries (modules) induces dilations that are proportional to metabolic rate in the two arteriolar generations upstream of the stimulated capillaries (Berg BR, Cohen KD, and Sarelius IH. Am J Physiol Heart Circ Physiol 272: H2693-H2700, 1997). These remote dilations were hypothesized to be transmitted via gap junctions and not perivascular nerves. In the present study, halothane (0.07%) blocked dilation in the module inflow arteriole, and dilation in the second arteriolar generation upstream, the branch arteriole, was blocked by both 600 mosM sucrose and halothane but not tetrodotoxin (2 microM). Dilations in both arterioles were not blocked by the gap junction uncoupler 18-beta-glycyrrhetinic acid (40 microM), and 80 mM KCl did not block dilation of the module inflow arteriole. These data implicate a gap junctional-mediated pathway insensitive to 18-beta-glycyrrhetinic acid in dilating the two arterioles upstream of the capillary module during "remote" muscle contraction. Dilation in the branch arteriole, but not the module inflow arteriole, was attenuated by 100 microM N(omega)-nitro-L-arginine. Thus selective contraction of muscle fibers underneath capillaries results in dilations in the upstream arterioles that have characteristics consistent with a signal that is transmitted along the vessel wall through gap junctions, i.e., a conducted vasodilation. The observed insensitivities to 18-beta-glycyrrhetinic acid, to KCl, and to N(omega)-nitro-L-arginine suggest, however, that there are multiple signaling pathways by which remote dilations can be initiated in these microvessels.  相似文献   
10.
Extracellular production of metal nanoparticles by several strains of the fungus Fusarium oxysporum was carried out. It was found that aqueous silver ions when exposed to several Fusarium oxysporum strains are reduced in solution, thereby leading to the formation of silver hydrosol. The silver nanoparticles were in the range of 20–50 nm in dimensions. The reduction of the metal ions occurs by a nitrate-dependent reductase and a shuttle quinone extracellular process. The potentialities of this nanotechnological design based in fugal biosynthesis of nanoparticles for several technical applications are important, including their high potential as antibacterial material.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号