首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   616篇
  免费   35篇
  2021年   5篇
  2020年   2篇
  2019年   9篇
  2018年   9篇
  2017年   12篇
  2016年   12篇
  2015年   21篇
  2014年   21篇
  2013年   47篇
  2012年   22篇
  2011年   41篇
  2010年   25篇
  2009年   19篇
  2008年   29篇
  2007年   34篇
  2006年   32篇
  2005年   35篇
  2004年   31篇
  2003年   30篇
  2002年   23篇
  2001年   7篇
  2000年   12篇
  1999年   14篇
  1998年   10篇
  1997年   7篇
  1996年   7篇
  1995年   10篇
  1994年   8篇
  1993年   9篇
  1991年   8篇
  1990年   9篇
  1989年   4篇
  1988年   6篇
  1987年   5篇
  1986年   3篇
  1985年   5篇
  1984年   9篇
  1983年   6篇
  1982年   10篇
  1981年   6篇
  1980年   4篇
  1978年   2篇
  1976年   5篇
  1974年   6篇
  1973年   2篇
  1972年   2篇
  1966年   2篇
  1961年   3篇
  1960年   1篇
  1959年   3篇
排序方式: 共有651条查询结果,搜索用时 765 毫秒
1.
Age impacts alloimmunity. Effects of aging on T‐cell metabolism and the potential to interfere with immunosuppressants have not been explored yet. Here, we dissected metabolic pathways of CD4+ and CD8+ T cells in aging and offer novel immunosuppressive targets. Upon activation, CD4+ T cells from old mice failed to exhibit adequate metabolic reprogramming resulting into compromised metabolic pathways, including oxidative phosphorylation (OXPHOS) and glycolysis. Comparable results were also observed in elderly human patients. Although glutaminolysis remained the dominant and age‐independent source of mitochondria for activated CD4+ T cells, old but not young CD4+ T cells relied heavily on glutaminolysis. Treating young and old murine and human CD4+ T cells with 6‐diazo‐5‐oxo‐l‐norleucine (DON), a glutaminolysis inhibitor resulted in significantly reduced IFN‐γ production and compromised proliferative capacities specifically of old CD4+ T cells. Of translational relevance, old and young mice that had been transplanted with fully mismatched skin grafts and treated with DON demonstrated dampened Th1‐ and Th17‐driven alloimmune responses. Moreover, DON diminished cytokine production and proliferation of old CD4+ T cells in vivo leading to a significantly prolonged allograft survival specifically in old recipients. Graft prolongation in young animals, in contrast, was only achieved when DON was applied in combination with an inhibition of glycolysis (2‐deoxy‐d‐glucose, 2‐DG) and OXPHOS (metformin), two alternative metabolic pathways. Notably, metabolic treatment had not been linked to toxicities. Remarkably, immunosuppressive capacities of DON were specific to CD4+ T cells as adoptively transferred young CD4+ T cells prevented immunosuppressive capacities of DON on allograft survival in old recipients. Depletion of CD8+ T cells did not alter transplant outcomes in either young or old recipients. Taken together, our data introduce an age‐specific metabolic reprogramming of CD4+ T cells. Targeting those pathways offers novel and age‐specific approaches for immunosuppression.  相似文献   
2.
We discovered a new cataract mutation, kfrs4, in the Kyoto Fancy Rat Stock (KFRS) background. Within 1 month of birth, all kfrs4/kfrs4 homozygotes developed cataracts, with severe opacity in the nuclei of the lens. In contrast, no opacity was observed in the kfrs4/+ heterozygotes. We continued to observe these rats until they reached 1 year of age and found that cataractogenesis did not occur in kfrs4/+ rats. To define the histological defects in the lenses of kfrs4 rats, sections of the eyes of these rats were prepared. Although the lenses of kfrs4/kfrs4 homozygotes showed severely disorganised fibres and vacuolation, the lenses of kfrs4/+ heterozygotes appeared normal and similar to those of wild-type rats. We used positional cloning to identify the kfrs4 mutation. The mutation was mapped to an approximately 9.7-Mb region on chromosome 7, which contains the Mip gene. This gene is responsible for a dominant form of cataract in humans and mice. Sequence analysis of the mutant-derived Mip gene identified a 5-bp insertion. This insertion is predicted to inactivate the MIP protein, as it produces a frameshift that results in the synthesis of 6 novel amino acid residues and a truncated protein that lacks 136 amino acids in the C-terminal region, and no MIP immunoreactivity was observed in the lens fibre cells of kfrs4/kfrs4 homozygous rats using an antibody that recognises the C- and N-terminus of MIP. In addition, the kfrs4/+ heterozygotes showed reduced expression of Mip mRNA and MIP protein and the kfrs4/kfrs4 homozygotes showed no expression in the lens. These results indicate that the kfrs4 mutation conveys a loss-of-function, which leads to functional inactivation though the degradation of Mip mRNA by an mRNA decay mechanism. Therefore, the kfrs4 rat represents the first characterised rat model with a recessive mutation in the Mip gene.  相似文献   
3.
A survey for the natural occurrence of Fusarium mycotoxins, deoxynivalenol (DON), nivalenol (NIV) and zearalenone (ZEN), in Dutch cereals (totaling 29 samples) harvested in 1984/1985, showed that 90%, 79% and 62% of samples were contaminated with DON, NIV and ZEN, respectively. Average contents (ng/g) in the total of positive samples were 221 (DON), 123 (NIV) and 61 (ZEN). Among the cereals examined, the highest concentrations (ng/g) was 3198 (DON), 1875 (NIV) and 677 (ZEN) in a yellow corn sample for animal feed. The results of this survey show that Dutch cereals were relatively significantly contaminated with Fusarium mycotoxins.  相似文献   
4.
Endothelin-3 (ET-3) is a member of the novel vasoconstrictive peptide family, identified in porcine central nervous system. Intravenous bolus injection of 1000 pmol/kg of ET-3 in freely moving rats caused significant increases in plasma ACTH and corticosterone levels, almost equivalent to those of 100 pmol/kg of rat corticotropin-releasing hormone (rCRH). The action of ET-3 was virtually abolished by pretreatment of CRH-antagonist, alpha-helical CRH. When ET-3 was added to cultured anterior pituitary cells, neither direct stimulation of ACTH release nor potentiation of rCRH action was noted. The results indicate that ET-3 may function as a neuropeptide and stimulation of the CRH-neurons, direct or inderect, is mainly responsible for activation of ACTH and corticosterone release.  相似文献   
5.
6.
7.
Pyruvate kinase activity in primary cultures of hepatocytes isolated from a normal rat was maintained at a constant level similar to that found in vivo (14.0 +/- 2.8 units per mg of DNA) for over 6 days when both dexamethasone and insulin were included in the medium. Yet the pyruvate kinase activity decreased 50% when the cells were cultured for 2 days and 4 days, respectively, in the presence of either dexamethasone or insulin alone. A brief, 10 min incubation of hepatocytes in the presence of dexamethasone was sufficient to maintain the enzyme activity of cells subsequently cultured for 4 days in the presence of insulin. The optimal dexamethasone concentration was 1 microM. Three other glucocorticoids were able to maintain the pyruvate kinase activity in cells cultured in medium containing insulin. The presence of the protein synthesis inhibitors, actinomycin D or cyclohexamide in cells cultured in the presence of dexamethasone and insulin resulted in a 25% decrease in the pyruvate kinase activity. Therefore, it is suggested that the synergistic effect of glucocorticoids and insulin to maintain pyruvate kinase activity in primary cultures of hepatocytes is dependent upon the ability of these cells to maintain protein synthesis.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号