首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7700篇
  免费   856篇
  国内免费   3篇
  2021年   133篇
  2020年   71篇
  2019年   75篇
  2018年   92篇
  2017年   68篇
  2016年   150篇
  2015年   296篇
  2014年   300篇
  2013年   436篇
  2012年   571篇
  2011年   496篇
  2010年   300篇
  2009年   255篇
  2008年   438篇
  2007年   454篇
  2006年   376篇
  2005年   327篇
  2004年   341篇
  2003年   330篇
  2002年   322篇
  2001年   128篇
  2000年   104篇
  1999年   104篇
  1998年   111篇
  1997年   75篇
  1996年   73篇
  1995年   73篇
  1994年   76篇
  1993年   78篇
  1992年   84篇
  1991年   75篇
  1990年   80篇
  1989年   75篇
  1988年   75篇
  1987年   51篇
  1986年   59篇
  1985年   80篇
  1984年   69篇
  1983年   66篇
  1982年   62篇
  1981年   72篇
  1980年   60篇
  1979年   60篇
  1978年   54篇
  1976年   64篇
  1975年   45篇
  1974年   46篇
  1973年   46篇
  1972年   43篇
  1971年   44篇
排序方式: 共有8559条查询结果,搜索用时 43 毫秒
1.
2.
L-myo-Inositol-1-phosphate synthase has been found to have at least a 5-fold preference for the beta-anomer of its natural substrate D-Glc-6-P. The alpha-anomer appears to be an inhibitor of the reaction and may be converted to product as well. As well as showing an enzymatic preference for the equatorial C-1 hydroxyl of D-Glc-6-P, our results suggest that it is the pyranose form of D-Glc-6-P that binds to the enzyme and that ring-opening is an enzymatic step. We have also found D-2-dGlc-6-P, D-2-F-2-dGlc-6-P, and D-Man-6-P each to be both competitive inhibitors and substrates that are converted to inositol phosphates by the synthase. D-Allose-6-P is a weak inhibitor of the enzyme, but not a substrate. D-Gal-6-P is neither substrate nor inhibitor. Thus the specificity of the synthase with respect to single position epimers of D-Glc-6-P increases in the order C1 less than C2 much less than C3 less than C4.  相似文献   
3.
4.
5.
6.
7.
We have examined the effects of extracellular and intracellular Ca2+ concentrations upon basal and insulin-stimulated 2-deoxyglucose uptake in isolated rat adipocytes. In the absence of extracellular Ca2+, both basal and insulin-stimulated glucose uptake were significantly reduced. Insulin-stimulated glucose transport was optimal at 1 and 2 mM Ca2+. Further increases in extracellular Ca2+ concentration (3 mM) significantly diminished insulin-stimulated glucose uptake. When intracellular Ca2+ concentrations were augmented by ionomycin (1 microM), insulin-stimulated glucose uptake was significantly reduced at extracellular Ca2+ concentrations of 2 and 3 mM. The levels of intracellular free Ca2+ concentrations were then measured with Ca2+ indicator fura-2. The correlation between the levels of intracellular free Ca2+ and the magnitude of insulin-stimulated glucose uptake revealed that the optimal effect of insulin is observed at Ca2+ levels between 140 and 370 nM. At both extremes outside of this window, both low and high levels of intracellular Ca2+ result in diminished cellular responsiveness to insulin. These data suggest that intracellular calcium concentrations may exert a dual role in the regulation of cellular sensitivity to insulin. First, there must exist a minimal concentration of intracellular calcium to promote insulin action. Second, increased levels of intracellular calcium may provide a critical signal for diminution of insulin action.  相似文献   
8.
9.
10.
The relationship between environment and mutation is complex [1]. Claims of Lamarkian mutation [2] have proved unfounded [3], [4] and [5]; it is apparent, however, that the external environment can influence the generation of heritable variation, through either direct effects on DNA sequence [6] or DNA maintenance and copying mechanisms [7], [8], [9] and [10], or as a consequence of evolutionary processes [11], [12], [13], [14], [15] and [16]. The spectrum of mutational events subject to environmental influence is unknown [6] and precisely how environmental signals modulate mutation is unclear. Evidence from bacteria suggests that a transient recombination-dependent hypermutational state can be induced by starvation [5]. It is also apparent that chnages in the mutability of specific loci can be influenced by alterations in DNA topology [10] and [17]. Here we describe a remarkable instance of adaptive evolution in Salmonella which is caused by a mutation that occurs in intermediate-strength osmotic environments. We show that the mutation is not ‘directed’ and describe its genetic basis. We also present compelling evidence in support of the hypothesis that the mutational event is constrained by signals transmitted from the external environment via changes in the activity of DNA gyrase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号