首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   3篇
  2022年   1篇
  2015年   2篇
  2013年   2篇
  2012年   1篇
  2011年   4篇
  2010年   2篇
  2008年   1篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  2003年   3篇
  2001年   2篇
  1974年   1篇
排序方式: 共有24条查询结果,搜索用时 296 毫秒
1.
The work was focused on the investigation of possible dependencies between the development of viral infection in plants and the presence of high heavy metal concentrations in soil. Field experiments have been conducted in order to study the development of systemic tobacco mosaic virus (TMV) infection in Lycopersicon esculentum L. cv. Miliana plants under effect of separate salts of heavy metals Cu, Zn and Pb deposited in soil. As it is shown, simultaneous effect of viral infection and heavy metals in tenfold maximum permissible concentration leads to decrease of total chlorophyll content in experiment plants mainly due to the degradation of chlorophyll a. The reduction of chlorophyll concentration under the combined influence of both stress factors was more serious comparing to the separate effect of every single factor. Plants' treatment with toxic concentrations of lead and zinc leaded to slight delay in the development of systemic TMV infection together with more than twofold increase of virus content in plants that may be an evidence of synergism between these heavy metal's and virus' effects. Contrary, copper although decreased total chlorophyll content but showed protective properties and significantly reduced amount of virus in plants.  相似文献   
2.

Backgroud  

Extramedullary hematopoiesis (EMH) is defined as the presence of hematopoietic stem cells such as erythroid and myeloid lineage plus megakaryocytes in extramedullary sites like liver, spleen and lymph nodes and is usually associated with either bone marrow or hematological disorders. Mammary EMH is a rare condition either in human and veterinary medicine and can be associated with benign mixed mammary tumors, similarly to that described in this case.  相似文献   
3.
4.
Over 4000 flavonoids have been identified so far and among these, many are known to have antitumor activities. The basis of the relationships between chemical structures, type and position of substituent groups and the effects these compounds exert specifically on cancer cells are not completely elucidated. Here we report the differential cytotoxic effects of two flavone isomers on human cancer cells from breast (MCF7, SK-BR-3), colon (Caco-2, HCT116), pancreas (MIA PaCa, Panc 28), and prostate (PC3, LNCaP) that vary in differentiation status and tumorigenic potential. These flavones are derived from plants of the family Asteraceae, genera Gnaphalium and Achyrocline reputed to have anti-cancer properties. Our studies indicate that 5,7-dihydroxy-3,6,8-trimethoxy-2-phenyl-4H-chromen-4-one (5,7-dihydroxy-3,6,8-trimethoxy flavone) displays potent activity against more differentiated carcinomas of the colon (Caco-2), and pancreas (Panc28), whereas 3,5-dihydroxy-6,7,8-trimethoxy-2-phenyl-4H-chromen-4-one (3,5-dihydroxy-6,7,8-trimethoxy flavone) cytototoxic action is observed on poorly differentiated carcinomas of the colon (HCT116), pancreas (Mia PaCa), and breast (SK-BR3). Both flavones induced cell death (>50%) as proven by MTT cell viability assay in these cancer cell lines, all of which are regarded as highly tumorigenic. At the concentrations studied (5-80 μM), neither flavone demonstrated activity against the less tumorigenic cell lines, breast cancer MCF-7 cells, androgen-responsive LNCaP human prostate cancer line, and androgen-unresponsive PC3 prostate cancer cells. 5,7-dihydroxy-3,6,8-trimethoxy-2-phenyl-4H-chromen-4-one (5,7-dihydroxy-3,6,8-trimethoxy flavone) displays activity against more differentiated carcinomas of the colon and pancreas, but minimal cytotoxicity on poorly differentiated carcinomas of these organs. On the contrary, 3,5-dihydroxy-6,7,8-trimethoxy-2-phenyl-4H-chromen-4-one (3,5-dihydroxy-6,7,8-trimethoxy flavone) is highly cytotoxic to poorly differentiated carcinomas of the colon, pancreas, and breast with minimal activity against more differentiated carcinomas of the same organs. These differential effects suggest activation of distinct apoptotic pathways. In conclusion, the specific chemical properties of these two flavone isomers dictate mechanistic properties which may be relevant when evaluating biological responses to flavones.  相似文献   
5.
6.
The membrane mucin Muc4 has been shown to alter cellular behavior through both anti-adhesive effects on cell-cell and cell-extracellular matrix interactions and its ability to act as an intramembrane ligand for the receptor tyrosine kinase ErbB2. The ERK pathway is regulated by both cell-matrix and cell-cell adhesion. An analysis of the effects of Muc4 expression on ERK phosphorylation in mammary tumor and epithelial cells, which exhibit both adhesion-dependent growth and contact inhibition of growth, showed that the effects are density dependent, with opposing effects on proliferating cells and contact-inhibited cells. In these cells, cell-matrix interactions through integrins are required for activation of the ERK mitogenesis pathway. However, cell-cell interactions via cadherins inhibit the ERK pathway. Expression of Muc4 reverses both of these effects. In contact-inhibited cells, Muc4 appears to activate the ERK pathway at the level of Raf-1; this activation does not depend on Ras activation. The increase in ERK activity correlates with an increase in cyclin D(1) expression in these cells. This abrogation of contact inhibition is dependent on the number of mucin repeats in the mucin subunit of Muc4, indicative of an anti-adhesive effect. The mechanism by which Muc4 disrupts contact inhibition involves a Muc4-induced relocalization of E-cadherin from adherens junctions at the lateral membrane of the cells to the apical membrane. Muc4-induced abrogation of contact inhibition may be an important mechanism by which tumors progress from an early, more benign state to invasiveness.  相似文献   
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号