首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Mucins provide a protective barrier for epithelial surfaces, and their overexpression in tumors has been implicated in malignancy. We have previously demonstrated that Muc4, a transmembrane mucin that promotes tumor growth and metastasis, physically interacts with the ErbB2 receptor tyrosine kinase and augments receptor tyrosine phosphorylation in response to the neuregulin-1beta (NRG1beta) growth factor. In the present study we demonstrate that Muc4 expression in A375 human melanoma cells, as well as MCF7 and T47D human breast cancer cells, enhances NRG1beta signaling through the phosphatidylinositol 3-kinase pathway. In examining the mechanism underlying Muc4-potentiated ErbB2 signaling, we found that Muc4 expression markedly augments NRG1beta binding to A375 cells without altering the total quantity of receptors expressed by the cells. Cell-surface protein biotinylation experiments and immunofluorescence studies suggest that Muc4 induces the relocalization of the ErbB2 and ErbB3 receptors from intracellular compartments to the plasma membrane. Moreover, Muc4 interferes with the accumulation of surface receptors within internal compartments following NRG1beta treatment by suppressing the efficiency of receptor internalization. These observations suggest that transmembrane mucins can modulate receptor tyrosine kinase signaling by influencing receptor localization and trafficking and contribute to our understanding of the mechanisms by which mucins contribute to tumor growth and progression.  相似文献   

2.
The receptor tyrosine kinases ErbB2 and ErbB3 are phosphorylated in response to injury of the airway epithelium. Since we have shown that the membrane mucin MUC4 can act as a ligand/modulator for ErbB2, affecting its localization in polarized epithelial cells and its phosphorylation, we questioned whether Muc4 was involved, along with ErbB2 and ErbB3, in the damage response of airway epithelia. To test this hypothesis, we first examined the localization of MUC4 in human airway samples. Both immunocytochemistry and immunofluorescence showed a co‐localization of MUC4 and ErbB2 at the airway luminal surface. Sequential immunoprecipitation and immunoblotting from airway cells demonstrated that the MUC4 and ErbB2 are present as a complex in airway epithelial cells. To assess the participation of MUC4 in the damage response, cultures of NCI‐H292 or airway cells were scratch‐wounded, then analyzed for association of phospho‐ErbB2 and ‐ErbB3 with MUC4 by sequential immunoprecipitation and immunoblotting. Wounded cultures exhibited increased phosphorylation of both receptors in complex with MUC4. Scratch wounding also increased activation of the downstream pathway through Akt, as predicted from our previous studies on Muc4 effects on ErbB2 and ErbB3. The participation of MUC4 in the phosphorylation response was also indicated by siRNA repression of MUC4 expression, which resulted in diminution of the phosphorylation of ErbB2 and ErbB3. These studies provide a new model for the airway epithelial damage response, in which the MUC4–ErbB2 complex is a key element in the sensor mechanism and phosphorylation of the receptors. J. Cell. Biochem. 107: 112–122, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
The membrane mucin Muc4 is aberrantly expressed in numerous epithelial carcinomas and is currently used as a cancer diagnostic and prognostic tool. Muc4 can also potentiate signal transduction by modulating differential ErbB2 phosphorylation in the absence and in the presence of the ErbB3 soluble ligand heregulin (HRG‐β1). These features of Muc4 suggest that Muc4 is not merely a cancer marker, but an oncogenic factor with a unique‐binding/activation relationship with the receptor ErbB2. In the present study, we examined the signaling mechanisms that are associated with the Muc4–ErbB2 module by analyzing ErbB2 differential signaling in response to Muc4 expression. Our study was carried out in the A375 human melanoma and BT‐474 breast cancer cell lines as our model systems. Quantitative and comparative signaling modulations were evaluated by immunoblot using phospho‐specific antibodies, and densitometry analysis. Signaling complex components were identified by chemical cross‐linking, fractionation by gel filtration, immunoprecipitation, and immunoblotting. Activated downstream signaling pathways were analyzed by an antibody microarray screen and immunoblot analyses. Our results indicate that Muc4 modulates ErbB2 signaling potential significantly by stabilizing and directly interacting with the ErbB2–ErbB3 heterodimer. Further analyses indicate that Muc4 promotes ErbB2 autocatalysis, but it has no effect on ErbB3 phosphorylation, although the chemical cross‐linking data indicated that the signaling module is composed of Muc4, ErbB2, and ErbB3. Our microarray analysis indicates that Muc4 expression promotes cell migration by increasing the phosphorylation of the focal adhesion kinase and also through an increase in the levels of β‐catenin. J. Cell. Physiol. 224: 649–657, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
In chronic obstructive pulmonary diseases, the airway epithelium is chronically exposed to neutrophil elastase, an inflammatory protease. The cellular response to neutrophil elastase dictates the balance between epithelial injury and repair. Key regulators of epithelial migration and proliferation are the ErbB receptor tyrosine kinases, including the epidermal growth factor receptor. In this context, we investigated whether neutrophil elastase may regulate expression of MUC4, a membrane-tethered mucin that has recently been identified as a ligand for ErbB2, the major heterodimerization partner of the epidermal growth factor receptor. In normal human bronchial epithelial cells, neutrophil elastase increased MUC4 mRNA levels in both a concentration- and time-dependent manner. RNA stability assays revealed that neutrophil elastase increased MUC4 mRNA levels by prolonging the mRNA half-life from 5 to 21 h. Neutrophil elastase also increased MUC4 glycoprotein levels as determined by Western analysis, using a monoclonal antibody specific for a nontandem repeat MUC4 sequence. Therefore, airway epithelial cells respond to neutrophil elastase exposure by increasing expression of MUC4, a potential activator of epithelial repair mechanisms.  相似文献   

5.
Qi Y  Wei DZ  Liu XF  Zhou MD 《遗传》2010,32(12):1247-1255
Neuregulin-1(NRG1,纽兰格林)通过活化ErbB2/ErbB4二聚体具有治疗心衰的作用,目前已完成临床二期。为避免作为心衰治疗药物时同时激活ErbB3并产生副作用,因此用NRG1变异体的方法寻找能对ErbB4专一性激活的配体。文章构建了带有不同筛选标记的ErbB2、ErbB3、ErbB4细胞表达质粒,将ErbB2/ErbB3、ErbB2/ErbB4质粒共转染至CHO细胞,建立了ErbB2/ErbB3特异性表达和ErbB2/ErbB4特异性表达的细胞株。通过与新生大鼠原代心肌细胞比较,证明ErbB2/ErbB4细胞株信号传导功能与心肌细胞相似,NRG1可以激活下游的AKT信号途径、PI3K信号途径,并表现出良好的剂量效应。因此可以通过检测与心肌功能密切相关的下游信号AKT磷酸化水平快速筛选抗心衰药物,并通过与ErbB2/ErbB3信号激活水平比较鉴定其对心肌细胞的特异性。文章还构建了31个不同的NRG1突变体并在大肠杆菌中成功的表达和纯化。将这些突变体用于刺激两个细胞株,通过检测AKT磷酸化水平,发现这些突变体对ErbB2/ErbB3与ErbB2/ErbB4受体的激活能力不同。进一步检测其中5个ErbB2/ErbB4激活特异性发生改变的突变体与两对受体的亲和力,发现这些突变体和ErbB2/ErbB4与ErbB2/ErbB3受体亲和力的变化有一致性。最终筛选到了4个可以更特异性激活ErbB2/ErbB4受体的突变体作为更有效治疗心衰的候选药物。  相似文献   

6.
7.
Dual oxidase 2 enzyme is a member of the reactive oxygen species-generating cell membrane NADPH oxidases involved in mucosal innate immunity. It is not known if the biological activity of dual oxidase 2 is mediated by direct bacterial killing by reactive oxygen species produced by the enzyme or by the same reactive oxygen species acting as second messengers that stimulate novel gene expression. To uncover the role of reactive oxygen species and dual oxidases as signaling molecules, we have dissected the pathway triggered by epidermal growth factor to induce mucins, the principal protective components of gastrointestinal mucus. We show that dual oxidase 2 is essential for selective epidermal growth factor induction of the transmembrane MUC3 and the secreted gel-forming MUC5AC mucins. Reactive oxygen species generated by dual oxidase 2 stabilize tyrosine phosphorylation of epidermal growth factor receptor and induce MUC3 and MUC5AC through persistent activation of extracellular signal-regulated kinases 1/2–protein kinase C. Knocking down dual oxidase 2 by selective RNA targeting (siRNA) reduced epidermal growth factor receptor phosphorylation, and MUC3 and MUC5AC gene expression. Extracellular reactive oxygen species produced by dual oxidase 2, upon stimulation by epidermal growth factor, stabilize epidermal growth factor receptor phosphorylation and activate extracellular signal-regulated kinases 1/2–protein kinase C which induce MUC5AC and MUC3. Extracellular reactive oxygen species produced by dual oxidase 2 that are known to directly kill bacteria, also contribute to the maintenance of the epidermal growth factor-amplification loop, which induces mucins. These data suggest a new function of dual oxidase 2 protein in the luminal protection of the gastrointestinal tract through the induction of mucin expression by growth factors.  相似文献   

8.
Mucins are high molecular weight, multifunctional glycoproteins comprised of two structural classes-the large transmembrane mucins and the gel-forming or secreted mucins. The primary function of mucins is to protect and lubricate the luminal surfaces of epithelium-lined ducts in the human body. Recent studies have identified a differential expression of both membrane bound (MUC1, MUC4 and MUC16) and secreted mucins (MUC2, MUC5AC, MUC5B and MUC6) in breast cancer tissues when compared with the non-neoplastic breast tissues. Functional studies have also uncovered many unique roles of mucins during the progression of breast cancer, which include modulation in proliferative, invasive and metastatic potential of tumor cells. Mucins function through many unique domains that can form complex association with various signaling molecules including growth factor receptors and intercellular adhesion molecules. While there is growing information about mucins in various malignancies including breast cancer, no focused review is there on the expression and functional roles of mucins in breast cancer. In this present review, we have discussed the differential expression and functional roles of mucins in breast cancer. The potential of mucins as diagnostic and prognostic markers and as therapeutic targets in breast cancer have also been discussed.  相似文献   

9.
Muc4/Sialomucin complex (SMC) acts as an intramembrane ligand for the receptor tyrosine kinase ErbB2, inducing a limited phosphorylation of the receptor. Because Muc4/SMC is found at the apical surfaces of polarized epithelial cells and ErbB2 is often basolateral, the question arises as to whether these components become associated in polarized cells. To address this question, we examined the localization of these proteins in polarized human colon carcinoma CACO-2 cells. Dual color immunofluorescence analysis by confocal microscopy demonstrated the basolateral localization of the ErbB2 in these cells; it is primarily co-localized with E-cadherin at adherens junctions. Expression of apical Muc4/SMC in these cells by transient transfection results in the localization of the ErbB2 at the apical surface. Two-color confocal microscopy indicated that ErbB2 is colocalized with Muc4/SMC in the transfected cells but not in untransfected cells in the same culture. The change of localization of ErbB2 was confirmed by cell surface biotinylation of apical and basolateral proteins, followed by streptavidin precipitation and the subsequent detection of ErbB2 by immunoblotting. In contrast, Na+/K+-ATPase maintains its basolateral localization in Muc4/SMC-transfected cells, indicating that the translocation of ErbB2 is not the result of depolarization of the cells. A potential physiological role for the apical localization of ErbB2 is indicated by the fact that ErbB2 phosphorylated at tyrosine 1248 is found predominantly in Muc4/SMC-transfected cells, but not in untransfected cells, and is co-localized with the apical Muc4/SMC. The ability of Muc4/SMC to alter the localization of ErbB2, particularly a phosphorylated form of it, in epithelial cells, suggests that it has an important role in regulating ErbB2 signaling.  相似文献   

10.
11.
Identification of MUC1 proteolytic cleavage sites in vivo   总被引:9,自引:0,他引:9  
Mucins are high molecular weight glycoproteins that provide a protective layer on epithelial surfaces and are involved in cell-cell interactions, signaling, and metastasis. The identification of several membrane-tethered mucins, including MUC1, MUC3, MUC4, and MUC12, has incited interest in the processing of these mucins and the mechanisms that govern their release from the cell surface. MUC1 consists of an extracellular subunit and a membrane-associated subunit. The two moieties are produced from a single precursor polypeptide by an early proteolytic cleavage event but remain associated throughout intracellular processing and transport to the cell surface. We identified the MUC1 proteolytic cleavage site and showed it to be identical in pancreas and colon cell lines and not to be influenced by the presence of heavily glycosylated tandem repeats. The MUC1 cleavage site shows homology with sequences in other cell-surface-associated proteins and may represent a common mechanism for processing of these molecules.  相似文献   

12.
The mucin MUC4 and its membrane partner the ErbB2 oncogenic receptor are potential interacting partners in human pancreatic tumour development. However, the way they function is still largely unknown. In this work, we aimed to identify the cellular mechanisms and the intracellular signalling pathways under the control of both ErbB2 and MUC4 in a human pancreatic adenocarcinomatous cell line. Using co-immunoprecipitation and GST pull-down, we show that MUC4 and ErbB2 interact in the human pancreatic adenocarcinomatous cell line CAPAN-2 via the EGF domains of MUC4. Stable cell clones were generated in which either MUC4 or ErbB2 were knocked down (KD) by a shRNA approach. Biological properties of these cells were then studied in vitro and in vivo. Our results show that ErbB2-KD cells are more apoptotic and less proliferative (decreased cyclin D1 and increased p27kip1 expression) while migration and invasive properties were not altered. MUC4-KD clones were less proliferative with decreased cyclin D1 expression, G1 cell cycle arrest and altered ErbB2/ErbB3 expression. Their migration properties were reduced whereas invasive properties were increased. Importantly, inhibition of ErbB2 and MUC4 expression did not impair the same signalling pathways (inhibition of MUC4 expression affected the JNK pathway whereas that of ErbB2 altered the MAPK pathway). Finally, ErbB2-KD and MUC4-KD cells showed impaired tumour growth in vivo. Our results show that ErbB2 and MUC4, which interact physically, activate different intracellular signalling pathways to regulate biological properties of CAPAN-2 pancreatic cancer cells.  相似文献   

13.
Muc4 serves as an intramembrane ligand for the receptor tyrosine kinase ErbB2. The time to complex formation and the stoichiometry of the complex were determined to be <15 min and 1:1 by analyses of Muc4 and ErbB2 coexpressed in insect cells and A375 tumor cells. In polarized CACO-2 cells, Muc4 expression causes relocalization of ErbB2, but not its heterodimerization partner ErbB3, to the apical cell surface, effectively segregating the two receptors. The apically located ErbB2 is phosphorylated on tyrosines 1139 and 1248. The phosphorylated ErbB2 in CACO-2 cells recruits the cytoplasmic adaptor protein Grb2, consistent with previous studies showing phosphotyrosine 1139 to be a Grb2 binding site. To address the issue of downstream signaling from apical ErbB2, we analyzed the three MAPK pathways of mammalian cells, Erk, p38, and JNK. Consistent with the more differentiated phenotype of the CACO-2 cells, p38 phosphorylation was robustly increased by Muc4 expression, with a consequent activation of Akt. In contrast, Erk and JNK phosphorylation was not changed. The ability of Muc4 to segregate ErbB2 and other ErbB receptors and to alter downstream signaling cascades in polarized epithelial cells suggests that it has a role in regulating ErbB2 in differentiated epithelia.  相似文献   

14.
Disruption of intestinal epithelial homeostasis, including enhanced apoptosis, is a hallmark of inflammatory bowel disease (IBD). We have recently shown that tumor necrosis factor (TNF) increases the kinase activity of ErbB4, a member of the epidermal growth factor receptor family that is elevated in mucosa of IBD patients and that promotes colon epithelial cell survival. In this study, we tested the hypothesis that TNF transactivates ErbB4 through TNF-α converting enzyme (TACE)-mediated ligand release and that this transactivation is necessary to protect colonic epithelial cells from cytokine-induced apoptosis. Using neutralizing antibodies, we show that heparin-binding EGF-like growth factor (HB-EGF) is required for ErbB4 phosphorylation in response to TNF. Pharmacological or genetic inhibition of the metalloprotease TACE, which mediates HB-EGF release from cells, blocked TNF-induced ErbB4 activation. MEK, but not Src or p38, was also required for transactivation. TACE activity and ligand binding were required for ErbB4-mediated antiapoptotic signaling; whereas mouse colon epithelial cells expressing ErbB4 were resistant to TNF-induced apoptosis, TACE inhibition or blockade of ErbB4 ligand binding reversed the survival advantage. We conclude that TNF transactivates ErbB4 through TACE-dependent HB-EGF release, thus protecting colon epithelial cells from cytokine-induced apoptosis. These findings have important implications for understanding how ErbB4 protects the colon from apoptosis-induced tissue injury in inflammatory conditions such as IBD.  相似文献   

15.
We have previously demonstrated that epidermal growth factor (EGF) inhibits calcium-dependent chloride secretion via a mechanism involving stimulation of phosphatidylinositol 3-kinase (PI3-K). The muscarinic agonist of chloride secretion, carbachol (CCh), also stimulates an antisecretory pathway that involves transactivation of the EGF receptor (EGFR) but does not involve PI3-K. Here, we have examined if ErbB receptors, other than the EGFR, have a role in regulation of colonic secretion and if differential effects on ErbB receptor activation may explain the ability of the EGFR to propagate diverse signaling pathways in response to EGF versus CCh. Basolateral, but not apical, addition of the ErbB3/ErbB4 ligand alpha-heregulin (HRG; 1-100 ng/ml) inhibited secretory responses to CCh (100 microM) across voltage-clamped T(84) epithelial cells. Immunoprecipitation/Western blot studies revealed that HRG (100 ng/ml) stimulated tyrosine phosphorylation and dimerization of ErbB3 and ErbB2, but had no effect on phosphorylation of the EGFR. HRG also stimulated recruitment of the p85 subunit of PI3-K to ErbB3/ErbB2 receptor dimers, while the PI3-K inhibitor, wortmannin (50 nM), completely reversed the inhibitory effect of HRG on CCh-stimulated secretion. Further studies revealed that, while both EGF (100 ng/ml) and CCh (100 microM) stimulated phosphorylation of the EGFR, only EGF stimulated phosphorylation of ErbB2, and neither stimulated ErbB3 phosphorylation. EGF, but not CCh, stimulated the formation of EGFR/ErbB2 receptor dimers and the recruitment of p85 to ErbB2. We conclude that ErbB2 and ErbB3 are expressed in T(84) cells and are functionally coupled to inhibition of calcium-dependent chloride secretion. Differential dimerization with other ErbB family members may underlie the ability of the EGFR to propagate diverse inhibitory signals in response to activation by EGF or transactivation by CCh.  相似文献   

16.
Maturation of pulmonary fetal type II cells to initiate adequate surfactant production is crucial for postnatal respiratory function. Little is known about specific mechanisms of signal transduction controlling type II cell maturation. The ErbB4 receptor and its ligand neuregulin (NRG) are critical for lung development. ErbB4 is cleaved at the cell membrane by the γ-secretase enzyme complex whose active component is either presenilin-1 (PSEN-1) or presenilin-2. ErbB4 cleavage releases the 80 kDa intracellular domain (4ICD), which associates with chaperone proteins such as YAP (Yes-associated protein) and translocates to the nucleus to regulate gene expression. We hypothesized that PSEN-1 and YAP have a development-specific expression in fetal type II cells and are important for ErbB4 signaling in surfactant production. In primary fetal mouse E16, E17, and E18 type II cells, PSEN-1 and YAP expression increased at E17 and E18 over E16. Subcellular fractionation showed a strong cytosolic and a weaker membrane location of both PSEN-1 and YAP. This was enhanced by NRG stimulation. Co-immunoprecipitations showed ErbB4 associated separately with PSEN-1 and with YAP. Their association, phosphorylation, and co-localization were induced by NRG. Confocal immunofluorescence and nuclear fractionation confirmed these associations in a time-dependent manner after NRG stimulation. Primary ErbB4-deleted E17 type II cells were transfected with a mutant ErbB4 lacking the γ-secretase binding site. When compared to transfection with wild-type ErbB4, the stimulatory effect of NRG on surfactant protein mRNA expression was lost. We conclude that PSEN-1 and YAP have crucial roles in ErbB4 signal transduction during type II cell maturation.  相似文献   

17.
The membrane-bound mucins belong to an ever-increasing family of O-glycoproteins. Based on their structure and localization at the cell surface they are thought to play important biological roles in cell–cell and cell–matrix interactions, in cell signalling and in modulating biological properties of cancer cells. Among them, MUC1 and MUC4 mucins are best characterized. Their altered expression in cancer (overexpression in the respiratory, gastro-intestinal, urogenital and hepato-biliary tracts) indicates an important role for these membrane-bound mucins in tumour progression, metastasis, cancer cell resistance to chemotherapeutics drugs and as specific markers of epithelial cancer cells. Some mechanisms responsible for MUC1 and MUC4 role in tumour cell properties have been deciphered recently. However, much remains to be done in order to understand the molecular mechanisms and signalling pathways that control the expression of membrane-bound mucins during the different steps of tumour progression toward adenocarcinoma and evaluate their potential as prognostic/diagnostic markers and as therapeutic tools. In this review we focus on the molecular mechanisms and signalling pathways known to control the expression of membrane-bound mucins in cancer. We will discuss the mechanisms of regulation at the promoter level (including genetic and epigenetic modifications) that may be responsible for the mucin altered pattern of expression in epithelial cancers.  相似文献   

18.
A fundamental aspect of epithelial homeostasis is the dependence on specific growth factors for cell survival, yet the underlying mechanisms remain obscure. We found an "inverse" mode of receptor tyrosine kinase signaling that directly links ErbB receptor inactivation to the induction of apoptosis. Upon ligand deprivation Mig6 dissociates from the ErbB receptor and binds to and activates the tyrosine kinase c-Abl to trigger p73-dependent apoptosis in mammary epithelial cells. Deletion of Errfi1 (encoding Mig6) and inhibition or RNAi silencing of c-Abl causes impaired apoptosis and luminal filling of mammary ducts. Mig6 activates c-Abl by binding to the kinase domain, which is prevented in the presence of epidermal growth factor (EGF) by Src family kinase-mediated phosphorylation on c-Abl-Tyr488. These results reveal a receptor-proximal switch mechanism by which Mig6 actively senses EGF deprivation to directly activate proapoptotic c-Abl. Our findings challenge the common belief that deprivation of growth factors induces apoptosis passively by lack of mitogenic signaling.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号