首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   147篇
  免费   3篇
  2021年   3篇
  2020年   1篇
  2019年   7篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2015年   9篇
  2014年   8篇
  2013年   11篇
  2012年   18篇
  2011年   9篇
  2010年   11篇
  2009年   4篇
  2008年   9篇
  2007年   5篇
  2006年   6篇
  2005年   4篇
  2004年   9篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   5篇
  1996年   2篇
  1994年   1篇
  1991年   4篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
排序方式: 共有150条查询结果,搜索用时 23 毫秒
1.
Structural and serologic studies on murine A/J monoclonal anti-arsonate antibodies resulted in the identification of a second idiotype family (Id36-60) in addition to the predominant idiotype family (IdCR). Id36-60, unlike IdCR, is a dominant idiotype in the BALB/c strain but is a "minor" idiotype in the A/J strain. The complete heavy and light chain variable region (VH and VL) amino acid sequences of a representative Id36-60 hybridoma protein from both the A/J and BALB/c strains have been determined. There are only four amino acid sequence differences between the VH of antibody 36-60 (A/J) and antibody 1210.7 (BALB/c). Two of these differences arise from single nucleotide changes in which the A/J and BALB/c Id36-60 VH germline gene sequences differ. The two other differences are the result of somatic mutation in hybridoma protein 36-60. In addition, Id36-60 heavy chains employ the same D and JH3 segments in both strains. The entire Vk2 VL of 36-60 and 1210.7 differ by only two amino acids, suggesting that like the heavy chains, they are derived from highly homologous VL genes. The same Jk segment is used in both antibodies. A comparison of the amino acid sequence data from Id36-60-bearing hybridomas suggests that a heavy chain amino acid difference accounts for the diminished arsonate binding by the 1210.7 hybridoma protein. Because the 1210.7 heavy chain is the unmutated product of the BALB/c VH gene, somatic mutation in VH may be required to enhance Ars affinity in this system.  相似文献   
2.
Present investigations were undertaken to study the influence of peptide NK-1 and NK-2 receptor agonists and antagonists as well as substance P and neurokinin A (the natural ligands for these tachykinin receptors) on oxytocin (OT) release from isolated rat hypothalamo-neurohypophysial (H-N) system as well as to determine whether the tachykinin NK-1 and/or NK-2 receptors contribute to the response of oxytocinergic neurons to melatonin. The results show, for the first time, that highly selective NK-1 receptor agonist, i.e., [Sar(9),Met(O(2))(11)]-Substance P, enhances while the NK-1 receptor antagonist (Tyr(6),D-Phe(7),D-His(9))-Substance P (6-11) - sendide - diminishes significantly OT secretion; the latter peptide was also found to antagonize the substance P-induced hormone release from isolated rat H-N system, when used at the concentration of 10(-7) M/L. Melatonin significantly inhibited basal and substance P-stimulated OT secretion. Neurokinin A and the NK-2 receptor selective agonist (beta-Ala(8))-Neurokinin A (4-10) as well as the NK-2 receptor antagonist (Tyr(5),D-Trp(6,8,9),Lys-NH(2)(10))-Neurokinin A (4-10) were essentially inactive in modifying OT release from the rat H-N system in vitro. The present data indicate a distinct role for tachykinin NK-1 (rather than NK-2) receptor in tachykinin-mediated regulation of OT secretion from the rat H-N system. Under present experimental conditions, however, a role of respective tachykinin receptors in the response of oxytocinergic neurons to melatonin has not been found.  相似文献   
3.
Thermotoga maritima is the most thermophilic eubacterium currently known and grows up to 90 degrees C by a fermentative metabolism in which H2, CO2, and organic acids are end products. It was shown that the production of H2 is catalyzed by a single hydrogenase located in the cytoplasm. The addition of tungsten to the growth medium was found to increase both the cellular concentration of the hydrogenase and its in vitro catalytic activity by up to 10-fold, but the purified enzyme did not contain tungsten. It is a homotetramer of Mr 280,000 and contains approximately 20 atoms of Fe and 18 atoms of acid-labile sulfide/monomer. Other transition metals, including nickel (and also selenium), were present in only trace amounts (less than 0.1 atoms/monomer). The hydrogenase was unstable at both 4 and 23 degrees C, even under anaerobic conditions, but no activity was lost in anaerobic buffer containing glycerol and dithiothreitol. Under these conditions the enzyme was also quite thermostable (t50% approximately 1 h at 90 degrees C) but extremely sensitive to irreversible inactivation by O2 (t50% approximately 10 s in air). The optimum pH ranges for H2 evolution and H2 oxidation were 8.6-9.5 and greater than or equal to 10.4, respectively, and the optimum temperature for catalytic activity was above 95 degrees C. In contrast to mesophilic Fe hydrogenases, the T. maritima enzyme had very low H2 evolution activity, did not use T. maritima ferredoxin as an electron donor for H2 evolution, was inhibited by acetylene but not by nitrite, and exhibited EPR signals typical of [2Fe-2S]1+ clusters. Moreover, the oxidized enzyme did not exhibit the rhombic EPR signal that is characteristic of the catalytic iron-sulfur cluster of mesophilic Fe hydrogenases. These data suggest that T. maritima hydrogenase has a different FeS site and/or mechanism for catalyzing H2 production. The potential role of tungsten in regulating the activity of this enzyme is discussed.  相似文献   
4.
The high affinity binding site for human immunodeficiency virus (HIV) envelope glycoprotein gp120 resides within the amino-terminal domain (D1) of CD4. Mutational and antibody epitope analyses have implicated the region encompassing residues 40-60 in D1 as the primary binding site for gp120. Outside of this region, a single residue substitution at position 87 abrogates syncytium formation without affecting gp120 binding. We describe two groups of CD4 monoclonal antibodies (mAbs) which recognize distinct epitopes associated with these regions in D1. These mAbs distinguish between the gp120 binding event and virus infection and virus-induced cell fusion. One cluster of mAbs, which bind at or near the high affinity gp120 binding site, blocked gp120 binding to CD4 and, as expected, also blocked HIV infection of CD4+ cells and virus-induced syncytium formation. A second cluster of mAbs, which recognize the CDR-3 like loop, did not block gp120 binding as demonstrated by their ability to form ternary complexes with CD4 and gp120. Yet, these mAbs strongly inhibited HIV infection of CD4+ cells and HIV-envelope/CD4-mediated syncytium formation. The structure of D1 has recently been solved at atomic resolution and in its general features resembles IgVk regions as predicted from sequence homology and mAb epitopes. In the D1 structure, the regions recognized by these two groups of antibodies correspond to the C'C" (Ig CDR2) and FG (Ig CDR3) hairpin loops, respectively, which are solvent-exposed beta turns protruding in two different directions on a face of D1 distal to the D2 domain. This face is straddled by the longer BC (Ig CDR1) loop which bisects the plain formed by C'C' and FG. This structure is consistent with C'C' and FG forming two distinct epitope clusters within D1. We conclude that the initial interaction between gp120 and CD4 is not sufficient for HIV infection and syncytium formation and that CD4 plays a critical role in the subsequent virus-cell and cell-cell membrane fusion events. We propose that the initial binding of CD4 to gp120 induces conformational changes in gp120 leading to subsequent interactions of the FG loop with other regions in gp120 or with the fusogenic gp41 potion of the envelope gp160 glycoprotein.  相似文献   
5.
In this study, we analyzed multibilayer lipid-protein membranes composed of the photosynthetic light-harvesting complex II (LHCII; isolated from spinach [Spinacia oleracea]) and the plant lipids monogalcatosyldiacylglycerol and digalactosyldiacylglycerol. Two types of pigment-protein complexes were analyzed: those isolated from dark-adapted leaves (LHCII) and those from leaves preilluminated with high-intensity light (LHCII-HL). The LHCII-HL complexes were found to be partially phosphorylated and contained zeaxanthin. The results of the x-ray diffraction, infrared imaging microscopy, confocal laser scanning microscopy, and transmission electron microscopy revealed that lipid-LHCII membranes assemble into planar multibilayers, in contrast with the lipid-LHCII-HL membranes, which form less ordered structures. In both systems, the protein formed supramolecular structures. In the case of LHCII-HL, these structures spanned the multibilayer membranes and were perpendicular to the membrane plane, whereas in LHCII, the structures were lamellar and within the plane of the membranes. Lamellar aggregates of LHCII-HL have been shown, by fluorescence lifetime imaging microscopy, to be particularly active in excitation energy quenching. Both types of structures were stabilized by intermolecular hydrogen bonds. We conclude that the formation of trans-layer, rivet-like structures of LHCII is an important determinant underlying the spontaneous formation and stabilization of the thylakoid grana structures, since the lamellar aggregates are well suited to dissipate excess energy upon overexcitation.  相似文献   
6.
DNA polymerases must accurately replicate DNA to maintain genome integrity. Carcinogenic adducts, such as 2-aminofluorene (AF) and N-acetyl-2-aminofluorene (AAF), covalently bind DNA bases and promote mutagenesis near the adduct site. The mechanism by which carcinogenic adducts inhibit DNA synthesis and cause mutagenesis remains unclear. Here, we measure interactions between a DNA polymerase and carcinogenic DNA adducts in real-time by single-molecule fluorescence. We find the degree to which an adduct affects polymerase binding to the DNA depends on the adduct location with respect to the primer terminus, the adduct structure and the nucleotides present in the solution. Not only do the adducts influence the polymerase dwell time on the DNA but also its binding position and orientation. Finally, we have directly observed an adduct- and mismatch-induced intermediate state, which may be an obligatory step in the DNA polymerase proofreading mechanism.  相似文献   
7.
The main goal of this paper is to estimate how the observed and predicted climate changes may affect the development rates and emergence of the codling moth in the southern part of the Wielkopolska region in Poland. In order to simulate the future climate conditions one of the most frequently used A1B SRES scenarios and two different IPCC climate models (HadCM3 and GISS modelE) are considered. A daily weather generator (WGENK) was used to generate temperature values for present and future climate conditions (time horizons 2020–2040 and 2040–2060). Based on the generated data set, the degree-days values were then calculated and the emergence dates of the codling moth at key stages were estimated basing on the defined thresholds. Our analyses showed that the average air surface temperature in the Wielkopolska region may increase from 2.8°C (according to GISS modelE) even up to 3.3°C (HadCM3) in the period of 2040–2060. With the warming climate conditions the cumulated degree-days values may increase at a rate of about 142 DD per decade when the low temperature threshold (T low ) of 0°C is considered and 91 DD per decade when T low ?=?10°C. The key developmental stages of the codling moth may occur much earlier in the future climate conditions than currently, at a rate of about 3.8–6.8 days per decade, depending on the considered GCM model and the pest developmental stage. The fastest changes may be observed in the emergence dates of 95% of larvae of the second codling moth generation. This could increase the emergence probability of the pest third generation that has not currently occurred in Poland.  相似文献   
8.
Plant Molecular Biology - Degradation of nitrogen-rich purines is tightly and oppositely regulated under drought and low nitrogen supply in bread wheat. Allantoin is a key target metabolite for...  相似文献   
9.
The health risks to astronauts exposed to high-LET radiation include possible cognitive deficits. The pathogenesis of radiation-induced cognitive injury is unknown but may involve loss of neural precursor cells from the subgranular zone (SGZ) of the hippocampal dentate gyrus. To address this hypothesis, adult female C57BL/6 mice received whole-body irradiation with a 1 GeV/nucleon iron-particle beam in a single fraction of 0, 1, 2 and 3 Gy. Two months later mice were given BrdU injections to label proliferating cells. Subsequently, hippocampal tissue was assessed using immunohistochemistry for detection of proliferating cells and immature neurons. Routine histopathological methods were used to qualitatively assess tissue/cell morphology in the hippocampal formation and adjacent areas. When compared to controls, irradiated mice showed progressively fewer BrdU-positive cells as a function of dose. This observation was confirmed by Ki-67 immunostaining in the SGZ showing reductions in a dose-dependent fashion. The progeny of the proliferating SGZ cells, i.e. immature neurons, were visualized by doublecortin staining and were significantly reduced by irradiation, with the decreases ranging from 34% after 1 Gy to 71% after 3 Gy. Histopathology showed that in addition to cell changes in the SGZ, (56)Fe particles induced a chronic and diffuse astrocytosis and changes in pyramidal neurons in and around the hippocampal formation. The present data provide the first evidence that high-LET radiation has deleterious effects on cells associated with hippocampal neurogenesis.  相似文献   
10.
Our previous studies demonstrated that Csk homologous kinase (CHK) acts as a negative growth regulator of human breast cancer through inhibition of ErbB-2/neu-mediated Src family kinase activity (Bougeret, C., Jiang, S., Keydar, I., and Avraham, H. (2001) J. Biol. Chem. 276, 33711-33720. The interaction between the CHK SH2 domain and Tyr(P)(1248) of the ErbB-2 receptor has been shown to be specific and critical for CHK function. In this report, we investigated whether the interaction of the CHK SH2 domain and ErbB-2 is directly related to the inhibition of heregulin-stimulated Src kinase activity. We constructed three CHK SH2 domain binding mutants: G129R (enhanced binding), R147K (inhibited binding), and R147A (disrupted binding). NMR spectra for the domains of each construct were used to evaluate their interaction with a Tyr(P)(1248)-containing ErbB-2 peptide. G129R showed enhanced binding to ErbB-2, whereas binding was completely disrupted by R147A. The enhanced binding mutant showed chemical shift changes at the same residues as wild-type CHK, indicating that this mutant has the same binding characteristics as the wild-type protein. Furthermore, inhibition of heregulin-stimulated Src kinase activity was markedly diminished by R147A, whereas G129R-mediated inhibition was stronger as compared with wild-type CHK. These results indicate that the specific interaction of CHK and ErbB-2 via the SH2 domain of CHK is directly related to the growth inhibitory effects of CHK. These new CHK high affinity binding constructs may serve as good candidates for inhibition of the ErbB-2/Src transduction pathway in gene therapy studies in breast cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号