首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   150篇
  免费   7篇
  2021年   1篇
  2019年   1篇
  2017年   1篇
  2015年   4篇
  2014年   2篇
  2013年   4篇
  2012年   6篇
  2011年   3篇
  2010年   5篇
  2009年   8篇
  2008年   4篇
  2007年   1篇
  2006年   5篇
  2005年   1篇
  2004年   2篇
  2003年   4篇
  2002年   3篇
  2001年   5篇
  2000年   6篇
  1999年   12篇
  1998年   4篇
  1997年   1篇
  1996年   4篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   5篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   7篇
  1980年   1篇
  1979年   10篇
  1978年   11篇
  1977年   4篇
  1975年   1篇
  1974年   5篇
  1973年   1篇
  1969年   1篇
排序方式: 共有157条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
The regulatory role that mitochondria play in cell dysfunction and cell-death pathways involves the concept of a complex and multisite regulation of cellular respiration and energy production signaled by cellular and intercellular messengers. Hence, the role of nitric oxide, as a physiological regulator acting directly on the mitochondrial respiratory chain acquires further relevance. This article provides a survey of the major regulatory roles of nitric oxide on mitochondrial functions as an expression of two major metabolic pathways for nitric oxide consumption: a reductive pathway, involving mitochondrial ubiquinol and yielding nitroxyl anion and an oxidative pathway involving superoxide anion and yielding peroxynitrite. The modulation of the decay pathways for nitrogen-and oxygen-centered radicals is further analyzed as a function of the redox transitions of mitochondrial ubiquinol. The interplay among these redox processes and its implications for mitochondrial function is discussed in terms of the mitochondrial steady-state levels (and gradients) of nitric oxide and superoxide anion.  相似文献   
8.
We analyzed the effect of nitric oxide (NO) on oxygen-dependent cytotoxic responses mediated by neutrophils against unopsonized erythrocytes using three NO donors: S-nitrosoglutathione (GSNO), S-nitroso-N-acetylpenicillamine (SNAP), and sodium nitroprusside (SNP). Neutrophils were treated with these compounds for 1-2 min at 37 degrees C and cytotoxicity was then triggered in the presence of NO donors by precipitating immune complexes, aggregated IgG, the chemotactic peptide FMLP, or opsonized zymosan. GSNO induced, in all cases, a marked increase in cytotoxic responses, while SNAP moderately increased cytotoxicity triggered by immune complexes, aggregated IgG, or Z, opsonized zymosen, without modifying those responses induced by FMLP. By contrast, SNP dramatically suppressed cytotoxicity triggered by all of the stimuli assessed. The enhancing effects mediated by GSNO and SNAP did not depend on the stimulation of guanylyl cyclase and were prevented by the NO scavengers hemoglobin and PTIO (2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl 3-oxide). The inhibitory activity of SNP, on the other hand, was not prevented by NO scavengers, suggesting that it cannot be ascribed to the release of NO. In another set of experiments, neutrophils were pretreated with GSNO or SNAP for different times. Then cells were washed to remove NO donors from the culture medium, and cytotoxicity was triggered by different stimuli. It was found that neutrophils must be pretreated with NO donors for at least 4 h to increase cytotoxic responses, and pretreatment for longer periods (i.e., 8 or 18 h) further increased cytotoxicity. Not only cytotoxic responses, but also the production of O2- and H2O2, and the release of myeloperoxidase were increased under these conditions.  相似文献   
9.
Mitochondria are the specialized organelles for energy metabolism but also participate in the production of O(2) active species, cell cycle regulation, apoptosis and thermogenesis. Classically, regulation of mitochondrial energy functions was based on the ADP/ATP ratio, which dynamically stimulates the transition between resting and maximal O(2) uptake. However, in the last years, NO was identified as a physiologic regulator of electron transfer and ATP synthesis by inhibiting cytochrome oxidase. Additionally, NO stimulates the mitochondrial production of O(2) active species, primarily O(2)(-) and H(2)O(2), and, depending on NO matrix concentration, of ONOO(-), which is responsible for the nitrosylation and nitration of mitochondrial components. By this means, alteration in mitochondrial complexes restricts energy output, further increases O(2) active species and changes cell signaling for proliferation and apoptosis through redox effects on specific pathways. These mechanisms are prototypically operating in prevalent generalized diseases like sepsis with multiorgan failure or limited neurodegenerative disorders like Parkinson's disease. Complex I appears to be highly susceptible to ONOO(-) effects and nitration, which defines an acquired group of mitochondrial disorders, in addition to the genetically induced syndromes. Increase of mitochondrial NO may follow over-expression of nNOS, induction and translocation of iNOS, and activation and/or increased content of the newly described mtNOS. Likewise, mtNOS is important in the modulation of O(2) uptake and cell signaling, and in mitochondrial pathology, including the effects of aging, dystrophin deficiency, hypoxia, inflammation and cancer.  相似文献   
10.
The regulatory role that mitochondria play in cell dysfunction and cell-death pathways involves the concept of a complex and multisite regulation of cellular respiration and energy production signaled by cellular and intercellular messengers. Hence, the role of nitric oxide, as a physiological regulator acting directly on the mitochondrial respiratory chain acquires further relevance. This article provides a survey of the major regulatory roles of nitric oxide on mitochondrial functions as an expression of two major metabolic pathways for nitric oxide consumption: a reductive pathway, involving mitochondrial ubiquinol and yielding nitroxyl anion and an oxidative pathway involving superoxide anion and yielding peroxynitrite. The modulation of the decay pathways for nitrogen-and oxygen-centered radicals is further analyzed as a function of the redox transitions of mitochondrial ubiquinol. The interplay among these redox processes and its implications for mitochondrial function is discussed in terms of the mitochondrial steady-state levels (and gradients) of nitric oxide and superoxide anion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号