首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Free radical chemistry in biological systems   总被引:4,自引:0,他引:4  
Mitochondria are an active source of the free radical superoxide (O2-) and nitric oxide (NO), whose production accounts for about 2% and 0.5% respectively, of mitochondrial O2 uptake under physiological conditions. Superoxide is produced by the auto-oxidation of the semiquinones of ubiquinol and the NADH dehydrogenase flavin and NO by the enzymatic action of the nitric oxide synthase of the inner mitochondrial membrane (mtNOS). Nitric oxide reversibly inhibits cytochrome oxidase activity in competition with O2. The balance between NO production and its utilization results in a NO intramitochondrial steady-state concentration of 20-50 nM, which regulates mitochondrial O2 uptake and energy supply. The regulation of cellular respiration and energy production by NO and its ability to switch the pathway of cell death from apoptosis to necrosis in physiological and pathological conditions could take place primarily through the inhibition of mitochondrial ATP production. Nitric oxide reacts with O2- in a termination reaction in the mitochondrial matrix, yielding peroxynitrite (ONOO-), which is a strong oxidizing and nitrating species. This reaction accounts for approximately 85% of the rate of mitochondrial NO utilization in aerobic conditions. Mitochondrial aging by oxyradical- and peroxynitrite-induced damage would occur through selective mtDNA damage and protein inactivation, leading to dysfunctional mitochondria unable to keep membrane potential and ATP synthesis.  相似文献   

2.
Oxygen dependence of mitochondrial nitric oxide synthase activity   总被引:3,自引:0,他引:3  
The effect of O(2) concentration on mitochondrial nitric oxide synthase (mtNOS) activity and on O(2)(-) production was determined in rat liver, brain, and kidney submitochondrial membranes. The K(mO(2)) for mtNOS were 40, 73, and 37 microM O(2) and the V(max) were 0.51, 0.49, and 0.42 nmol NO/minmg protein for liver, brain, and kidney mitochondria, respectively. The rates of O(2)(-) production, 0.5-12.8 nmol O(2)(-)/minmg protein, depended on O(2) concentration up to 1.1mM O(2). Intramitochondrial NO, O(2)(-), and ONOO(-) steady-state concentrations were calculated for the physiological level of 20 microM O(2); they were 20-39 nM NO, 0.17-0.33 pM O(2)(-), and 0.6-2.2 nM ONOO(-) for the three organs. These levels establish O(2)/NO ratios of 513-1000 that correspond to physiological inhibitions of cytochrome oxidase by intramitochondrial NO of 16-25%. The production of NO by mtNOS appears as a regulatory process that modulates mitochondrial oxygen uptake and cellular energy production.  相似文献   

3.
Cytochrome c nitration by peroxynitrite   总被引:1,自引:0,他引:1  
Peroxynitrite (ONOO(-)), the product of superoxide (O(2)) and nitric oxide (.NO) reaction, inhibits mitochondrial respiration and can stimulate apoptosis. Cytochrome c, a mediator of these two aspects of mitochondrial function, thus represents an important potential target of ONOO(-) during conditions involving accelerated rates of oxygen radical and.NO generation. Horse heart cytochrome c(3+) was nitrated by ONOO(-), as indicated by spectral changes, Western blot analysis, and mass spectrometry. A dose-dependent loss of cytochrome c(3+) 695 nm absorption occurred, inferring that nitration of a critical heme-vicinal tyrosine (Tyr-67) promoted a conformational change, displacing the Met-80 heme ligand. Nitration was confirmed by cross-reactivity with a specific antibody against 3-nitrotyrosine and by increased molecular mass compatible with the addition of a nitro-(-NO(2)) group. Mass analysis of tryptic digests indicated the preferential nitration of Tyr-67 among the four conserved tyrosine residues in cytochrome c. Cytochrome c(3+) was more extensively nitrated than cytochrome c(2+) because of the preferential oxidation of the reduced heme by ONOO(-). Similar protein nitration patterns were obtained by ONOO(-) reaction in the presence of carbon dioxide, whereupon secondary nitrating species arise from the decomposition of the nitroso-peroxocarboxylate (ONOOCO(2)(-)) intermediate. Peroxynitrite-nitrated cytochrome c displayed significant changes in redox properties, including (a) increased peroxidatic activity, (b) resistance to reduction by ascorbate, and (c) impaired support of state 4-dependent respiration in intact rat heart mitochondria. These results indicate that cytochrome c nitration may represent both oxidative and signaling events occurring during .NO- and ONOO(-)-mediated cell injury.  相似文献   

4.
The production of NO by heart mitochondria was 0.7-1.1 nmol NO/min.mg protein, an activity similar to the ones observed in mitochondrial membranes from other organs. Heart mtNOS seems to contribute with about 56% of the total cellular NO production. The immunological nature of the mtNOS isoform of cardiac tissue remains unclear; in our laboratory, heart mtNOS reacted with an anti-iNOS anti-body. Heart mtNOS expression and activity are regulated by physiological and pharmacological effectors. The state 4/state 3 transition regulates heart mtNOS activity and NO release in intact respiring mitochondria: NO production rates in state 3 were 40% lower than in state 4. Heart mtNOS expression was selectively regulated by O(2) availability in hypobaric conditions and the activity was 20-60% higher in hypoxic rats than in control animals, depending on age. In contrast, NADH-cytochrome c reductase and cytochrome oxidase activities were not affected by hypoxia. The activity of rat heart mtNOS decreased 20% on aging from 12 to 72 weeks of age. On the pharmacological side, mitochondrial NO production was increased after enalapril treatment (the inhibitor of the angiotensin converting enzyme) with modification of heart mtNOS functional activity in the regulation of mitochondrial O(2) uptake and H(2)O(2) production. Thus, heart mtNOS is a highly regulated mitochondrial enzyme, which in turn, plays a regulatory role through mitochondrial NO steady state levels that modulate O(2) uptake and O(2)(-) and H(2)O(2) production rates. Nitric oxide and H(2)O(2) constitute signals for metabolic control that are involved in the regulation of cellular processes, such as proliferation and apoptosis.  相似文献   

5.
Female rats were treated with FSH (40 IU/kg) on the first and second diestrus days (D1 and D2) and with LH (40 IU/kg) on the proestrus (P) day to synchronize and maximize ovarian changes. Follicle area increased by 50% from D1 to P, and the estrus (E) phase showed multiple corpora lutea and massive apoptosis. Increased oxygen uptakes (42-102%) were determined in ovary slices and in isolated mitochondria in active state 3 along the proliferation phase (D1-D2-P) that returned to initial values in the E phase. Mitochondrial content and the electron transfer activities of complexes I and IV were also maximal in the P phase (20-79% higher than in D1). Production of NO by mitochondrial nitric oxide synthase (mtNOS), biochemically determined, and the mtNOS functional activity in regulating state 3 oxygen uptake were also maximal at P and 79-88% higher than at D1. The moderately increased rate of NO in the proliferative phase is associated with mitochondrial biogenesis, whereas the high rate of NO generation by mtNOS at phase P appears to trigger mitochondria-dependent apoptosis. The calculated fraction of ovary mitochondria in state 3 was at a minimal value at the P phase. Mitochondrial oxidative damage, with increased thiobarbituric acid-reactive substances and protein carbonyls, indicates progressive mitochondrial dysfunction between phases P and E. The roles of mitochondria as ATP provider, as a source of NO to signal for mitochondrial proliferation and mitochondria-dependent apoptosis, and as a source of O(2)(-) and H(2)O(2) appear well adapted to serve the proliferation-apoptosis sequence of the ovarian cycle.  相似文献   

6.
Mitochondria were classically recognized as the organelles that produce the energy required to drive the endergonic processes of cell life, but now they are considered as the most important cellular source of free radicals, as the main target for free radical regulatory and toxic actions, and as the source of signaling molecules that command cell cycle, proliferation and apoptosis. The progress in the knowledge of mitochondrial functions in the last decades is reviewed. The mitochondrial production of the primary free radicals superoxide anion (O(2)(-)) and nitric oxide (NO), as well as of the termination products H(2)O(2) (hydrogen peroxide) and peroxynitrite (ONOO(-)), is described. A network of intramitochondrial antioxidants consisting of the enzymes Mn-superoxide dismutase and glutathione peroxidase and of the reductants NADH(2), ubiquinol and reduced glutathione, is operative in minimizing the potentially harmful effects of O(2)(-), NO, H(2)O(2) and ONOO(-). Nitric oxide and H(2)O(2) participate in cell signaling, through narrow concentration ranges that signal for opposite cellular situations, i.e., proliferation or apoptosis. A mechanism involving mitogen-activated protein kinases is described. The role of mitochondria in apoptosis is well established through the mitochondrion-dependent pathways of cell death, that includes increased NO production, loss of membrane potential, appearance of dysfunctional mitochondria, cytochrome c release and opening of the voltage-dependent anion channel of the outer membrane.  相似文献   

7.
To preserve thermoneutrality, cold exposure is followed by changes in energy expenditure and basal metabolic rate (BMR). Because nitric oxide (NO) modulates mitochondrial O(2) uptake and energy levels, we analyzed cold effects (30 days at 4 degrees C) on rat liver and skeletal muscle mitochondrial NO synthases (mtNOS) and their putative impact on BMR. Cold exposure delimited two periods: A (days 1-10), with high systemic O(2) uptake and weight loss, and B (days 10-30), with lower O(2) uptake and fat deposition. mtNOS activity and expression decreased in period A and then increased in period B by 60-100% in liver and skeletal muscle (P < 0.05). Conversely, mitochondrial O(2) uptake remained initially high in the presence of l-arginine and later fell by 30-50% (P < 0.05). On this basis, the estimated fractional contribution of liver plus muscle to total BMR varied from 40% in period A to 25% in period B. The transitional modulation of mtNOS in rat cold acclimation could participate in adaptive responses that favor calorigenesis or conservative energy-saving mechanisms.  相似文献   

8.
Using highly purified recombinant mitochondrial aconitase, we determined the kinetics and mechanisms of inactivation mediated by nitric oxide (*NO), nitrosoglutathione (GSNO), and peroxynitrite (ONOO(-)). High *NO concentrations are required to inhibit resting aconitase. Brief *NO exposures led to a reversible inhibition competitive with isocitrate (K(I)=35 microM). Subsequently, an irreversible inactivation (0.65 M(-1) s(-1)) was observed. Irreversible inactivation was mediated by GSNO also, both in the absence and in the presence of substrates (0.23 M(-1) s(-1)). Peroxynitrite reacted with the [4Fe-4S] cluster, yielding the inactive [3Fe-4S] enzyme (1.1 x 10(5) M(-1) s(-1)). Carbon dioxide enhanced ONOO(-)-dependent inactivation via reaction of CO(3)*(-) with the [4Fe-4S] cluster (3 x 10(8) M(-1) s(-1)). Peroxynitrite also induced m-aconitase tyrosine nitration but this reaction did not contribute to enzyme inactivation. Computational modeling of aconitase inactivation by O(2)*(-) and *NO revealed that, when NO is produced and readily consumed, measuring the amount of active aconitase remains a sensitive method to detect variations in O(2)*(-) production in cells but, when cells are exposed to high concentrations of NO, aconitase inactivation does not exclusively reflect changes in rates of O(2)*(-) production. In the latter case, extents of aconitase inactivation reflect the formation of secondary reactive species, specifically ONOO(-) and CO(3)*(-), which also mediate m-aconitase tyrosine nitration, a footprint of reactive *NO-derived species.  相似文献   

9.
Nitric oxide and cytokines constitute the molecular markers and the intercellular messengers of inflammation and septic shock. Septic shock occurs with an exacerbated inflammatory response that damages tissue mitochondria. Skeletal muscle appears as one of the main target organs in septic shock, showing an increased nitric oxide (NO) production, an early oxidative stress, and contractile failure. Mitochondria isolated from rat and human skeletal muscle in septic shock show a markedly increased NO generation and a decreased state 3 respiration, more marked with nicotinamide adenine dinucleotide (NAD)-linked substrates than with succinate, without uncoupling or impairment of phosphorylation. One of the current hypothesis for the molecular mechanisms of septic shock is that the enhanced NO production by mitochondrial nitric oxide synthase (mtNOS) leads to excessive peroxynitrite (ONOO(-)) production and protein nitration in the mitochondrial matrix, to mitochondrial dysfunction and to contractile failure. Surface chemiluminescence is a useful assay to assess inflammation and oxidative stress in in situ liver and skeletal muscle. Liver chemiluminescence in inflammatory processes and phagocyte chemiluminescence have been found spectrally different from spontaneous liver chemiluminescence with increased 440-600 nm emission, likely due to NO and ONOO(-) participation in the reactions leading to the formation of excited species.  相似文献   

10.
Nitric oxide (NO) exerts a wide range of its biological properties via its interaction with mitochondria. By competing with O(2), physiologically relevant concentrations of NO reversibly inhibit cytochrome oxidase and decrease O(2) consumption, in a manner resembling a pharmacological competitive antagonism. The inhibition regulates many cellular functions, by e.g., regulating the synthesis of ATP and the formation of mitochondrial transmembrane potential (Delta Psi). NO regulates the oxygen consumption of both the NO-producing and the neighboring cells; thus, it can serve as autoregulator and paracrine modulator of the respiration. On the other hand, NO reacts avidly with superoxide anion (O(2)(-)) to produce the powerful oxidizing agent, peroxynitrite (ONOO(-)) which affects mitochondrial functions mostly in an irreversible manner. How mitochondria and cells harmonize the reversible effects of NO versus the irreversible effects of ONOO(-) will be discussed in this review article. The exciting recent finding of mitochondrial NO synthase will also be discussed.  相似文献   

11.
Isolated copper/zinc superoxide dismutase (Cu/Zn-SOD) or manganese superoxide dismutase (Mn-SOD) together with hydrogen peroxide (H(2)O(2)) caused rapid breakdown of nitric oxide (NO) and production of peroxynitrite (ONOO(-)) indicated by the oxidation of dihydrorhodamine-1,2,3 (DHR) to rhodamine-1,2,3. The breakdown of NO by this reaction was inhibited by cyanide (CN(-)) or by diethyldithiocarbamate (DETC), both Cu/Zn-SOD inhibitors, and the conversion of DHR to rhodamine-1,2,3 was inhibited by incubating Cu/Zn-SOD with either CN(-) or with high levels of H(2)O(2) or by including urate, a potent scavenger of ONOO(-). In the presence of phenol, the reaction of SOD, H(2)O(2) and NO caused nitration of phenol, which is known to be a footprint of ONOO(-) formation. H(2)O(2) addition to macrophages (cell line J774) expressing the inducible form of NO synthase (i-NOS) caused rapid breakdown of the NO they produced and this was also inhibited by CN(-) and by DETC. Subsequent ONOO(-) production by the macrophages, via this reaction, was inhibited by CN(-), high levels of H(2)O(2) or by urate. H(2)O(2) addition to i-NOS macrophages also caused cell death which was, in part, prevented by DETC or urate. We also found inhibition of mitochondrial respiration with malate and pyruvate as substrates, when isolated liver mitochondria were incubated with Cu/Zn-SOD, H(2)O(2) and NO. Inhibition of mitochondrial respiration was partly prevented by urate. The production of ONOO(-) by SOD may be of significant importance pathologically under conditions of elevated H(2)O(2) and NO levels, and might contribute to cell death in inflammatory and neurodegenerative diseases, as well as in macrophage-mediated host defence.  相似文献   

12.
The reversible inhibitory effects of nitric oxide (.NO) on mitochondrial cytochrome oxidase and O(2) uptake are dependent on intramitochondrial.NO utilization. This study was aimed at establishing the mitochondrial pathways for.NO utilization that regulate O-(2) generation via reductive and oxidative reactions involving ubiquinol oxidation and peroxynitrite (ONOO(-)) formation. For this purpose, experimental models consisting of intact mitochondria, ubiquinone-depleted/reconstituted submitochondrial particles, and ONOO(-)-supplemented mitochondrial membranes were used. The results obtained from these experimental approaches strongly suggest the occurrence of independent pathways for.NO utilization in mitochondria, which effectively compete with the binding of.NO to cytochrome oxidase, thereby releasing this inhibition and restoring O(2) uptake. The pathways for.NO utilization are discussed in terms of the steady-state levels of.NO and O-(2) and estimated as a function of O(2) tension. These calculations indicate that mitochondrial.NO decays primarily by pathways involving ONOO(-) formation and ubiquinol oxidation and, secondarily, by reversible binding to cytochrome oxidase.  相似文献   

13.
Peroxynitrite (ONOO(-)) is a potent nitrating and oxidizing agent that is formed by a rapid reaction of nitric oxide (NO) with superoxide anion (O(2)). It appears to be involved in the pathophysiology of many inflammatory and neurodegenerative diseases. It has recently been reported (Pfeiffer, S., and Mayer, B. (1998) J. Biol. Chem. 273, 27280-27285) that ONOO(-) generated at neutral pH from NO and O(2) (NO/O(2)) was substantially less efficient than preformed ONOO(-) at nitrating tyrosine. Here we re-evaluated tyrosine nitration by NO/O(2) with a shorter incubation period and a more sensitive electrochemical detection system. Appreciable amounts of nitrotyrosine were produced by ONOO(-) formed in situ (2.9 micrometer for 5 min; 10 nm/s) by NO/O(2) flux obtained from propylamine NONOate (CH(3)N[N(O)NO](-) (CH(2))(3)NH(2)(+)CH(3)) and xanthine oxidase using pterin as a substrate in phosphate buffer (pH 7.0) containing 0.1 mm l-tyrosine. The yield of nitrotyrosine by this NO/O(2) flux was approximately 70% of that produced by the same flux of preformed ONOO(-) (2.9 micrometer/5 min). When hypoxanthine was used as a substrate, tyrosine nitration by NO/O(2) was largely eliminated because of the inhibitory effect of uric acid produced during the oxidation of hypoxanthine. Tyrosine nitration caused by NO/O(2) was inhibited by the ONOO(-) scavenger ebselen and was enhanced 2-fold by NaHCO(3), as would be expected, because CO(2) promotes tyrosine nitration. The profile of nitrotyrosine and dityrosine formation produced by NO/O(2) flux (2.9 micrometer/5 min) was consistent with that produced by preformed ONOO(-). Tyrosine nitration predominated compared with dityrosine formation caused by a low nanomolar flux of ONOO(-) at physiological concentrations of free tyrosine (<0.5 mm). In conclusion, our results show that NO generated with O(2) nitrates tyrosine with a reactivity and efficacy similar to those of chemically synthesized ONOO(-), indicating that ONOO(-) can be a significant source of tyrosine nitration in physiological and pathological events in vivo.  相似文献   

14.
Mitochondrial nitric oxide metabolism in rat muscle during endotoxemia   总被引:2,自引:0,他引:2  
In this study, heart and diaphragm mitochondria produced 0.69 and 0.77 nmol nitric oxide (NO)/min mg protein, rates that account for 67 and 24% of maximal cellular NO production, respectively. Endotoxemia and septic shock occur with an exacerbated inflammatory response that damages tissue mitochondria. Skeletal muscle seems to be one of the main target organs in septic shock, showing an increased NO production and early oxidative stress. The kinetic properties of mitochondrial nitric oxide synthase (mtNOS) of heart and diaphragm were determined. For diaphragm, the KM values for O2 and L-Arg were 4.6 and 37 microM and for heart were 3.3 and 36 microM. The optimal pH for mtNOS activity was 6.5 for diaphragm and 7.0 for heart. A marked increase in mtNOS activity was observed in endotoxemic rats, 90% in diaphragm and 30% in heart. Diaphragm and heart mitochondrial O2*- and H2O2 production were 2- to 3-fold increased during endotoxemia and Mn-SOD activity showed a 2-fold increase in treated animals, whereas catalase activity was unchanged. One of the current hypotheses for the molecular mechanisms underlying the complex condition of septic shock is that the enhanced NO production by mtNOS leads to excessive peroxynitrite production and protein nitration in the mitochondrial matrix, causing mitochondrial dysfunction and contractile failure.  相似文献   

15.
Mitochondria isolated from rat heart, liver, kidney and brain (respiratory control 4.0-6.5) release NO and H2O2 at rates that depend on the mitochondrial metabolic state: releases are higher in state 4, about 1.7-2.0 times for NO and 4-16 times for H2O2, than in state 3. NO release in rat liver mitochondria showed an exponential dependence on membrane potential in the range 55 to 180 mV, as determined by Rh-123 fluorescence. A similar behavior was reported for mitochondrial H2O2 production by [S.S. Korshunov, V.P. Skulachev, A.A. Starkov, High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 416 (1997) 15_18.]. Transition from state 4 to state 3 of brain cortex mitochondria was associated to a decrease in NO release (50%) and in membrane potential (24-53%), this latter determined by flow cytometry and DiOC6 and JC-1 fluorescence. The fraction of cytosolic NO provided by diffusion from mitochondria was 61% in heart, 47% in liver, 30% in kidney, and 18% in brain. The data supports the speculation that NO and H2O2 report a high mitochondrial energy charge to the cytosol. Regulation of mtNOS activity by membrane potential makes mtNOS a regulable enzyme that in turn regulates mitochondrial O2 uptake and H2O2 production.  相似文献   

16.
The existence of mitochondrial nitric oxide (NO) synthase (mtNOS) has been controversial since it was first reported in 1995. We have addressed this issue by making direct microsensor measurements of NO production in the mitochondria isolated from mouse hearts. Mitochondrial NO production was stimulated by Ca2+ and inhibited by blocking electrogenic Ca2+ uptake or by using NOS antagonists. Cardiac mtNOS was identified as the neuronal isoform by the absence of NO production in the mitochondria of mice lacking the neuronal but not the endothelial or inducible isoforms. In cardiomyocytes from dystrophin-deficient (mdx) mice, elevated intracellular Ca2+, increased mitochondrial NO production, slower oxidative phosphorylation, and decreased ATP production were detected. Inhibition of mtNOS increased contractility in mdx but not in wild-type cardiomyocytes, indicating that mtNOS may protect the cells from overcontracting. mtNOS was also implicated in radiation-induced cell damage. In irradiated rat/mouse urinary bladders, we have evidence that mitochondrially produced NO damages the urothelial "umbrella" cells that line the bladder lumen. This damage disrupts the permeability barrier thereby creating the potential to develop radiation cystitis. RT-PCR and Southern blot analyses indicate that mtNOS is restricted to the umbrella cells, which scanning electron micrographs show are selectively damaged by radiation. Simultaneous microsensor measurements demonstrate that radiation increases NO and peroxynitrite (ONOO-) production in these cells, which can be prevented by transfection with manganese superoxide dismutase (MnSOD) or instillation of NOS antagonists during irradiation or irradiation of bladders devoid of mtNOS. These studies demonstrate that mtNOS is in the cardiomyocytes and urothelial cells, that it is derived from the neuronal isoform, and that it can be either protective or detrimental.  相似文献   

17.
We report the first evidence of a mitochondrial NO synthase (mtNOS) in bird skeletal muscle. In vitro, mtNOS activity stimulated by l-arginine reduced intermyofibrillar mitochondrial oxygen uptake and ATP synthesis rates, stimulated endogenous H2O2 generation, but had no effect on oxidative phosphorylation efficiency. Arginine-induced effects were fully reversed by l-NAME, a known NOS inhibitor. When ducklings were cold exposed for 4 weeks, muscle mitochondria displayed an increased state 3 respiration, a reduced H2O2 generation but no significant alteration in mtNOS activity. We conclude that mtNOS is expressed in avian skeletal muscle.  相似文献   

18.
Nitric oxide (NO(*)) signaling is diverse, and involves reaction with free radicals, metalloproteins, and specific protein amino acid residues. Prominent among these interactions are the heme protein soluble guanylate cyclase and cysteine residues within several proteins such as caspases, the executors of apoptosis. Another well characterized site of NO(*) binding is the terminal complex of the mitochondrial respiratory chain, cytochrome c oxidase, although the downstream signaling effects of this interaction remain unclear. Recently, it has been recognized that the intracellular formation of hydrogen peroxide (H(2)O(2)) by controlled mechanisms contributes to what we term "redox tone," and so controls the activity and activation thresholds of redox-sensitive signaling pathways. In this hypothesis paper, it is proposed that NO(*)-dependent modulation of the respiratory chain can control the mitochondrial generation of H(2)O(2) for cell signaling purposes without affecting ATP synthesis.  相似文献   

19.
Excess superoxide (O(2)(-)) and nitric oxide (NO) forms peroxynitrite (ONOO(-)) during cardiac ischemia reperfusion (IR) injury, which in turn induces protein tyrosine nitration (tyr-N). Mitochondria are both a source of and target for ONOO(-). Our aim was to identify specific mitochondrial proteins that display enhanced tyr-N after cardiac IR injury, and to explore whether inhibiting O(2)(-)/ONOO(-) during IR decreases mitochondrial protein tyr-N and consequently improves cardiac function. We show here that IR increased tyr-N of 35 and 15kDa mitochondrial proteins using Western blot analysis with 3-nitrotyrosine antibody. Immunoprecipitation (IP) followed by LC-MS/MS identified 13 protein candidates for tyr-N. IP and Western blot identified and confirmed that the 35kDa tyr-N protein is the voltage-dependent anion channel (VDAC). Tyr-N of native cardiac VDAC with IR was verified on recombinant (r) VDAC with exogenous ONOO(-). We also found that ONOO(-) directly enhanced rVDAC channel activity, and rVDAC tyr-N induced by ONOO(-) formed oligomers. Resveratrol (RES), a scavenger of O(2)(-)/ONOO(-), reduced the tyr-N levels of both native and recombinant VDAC, while L-NAME, which inhibits NO generation, only reduced tyr-N levels of native VDAC. O(2)(-) and ONOO(-) levels were reduced in perfused hearts during IR by RES and L-NAME and this was accompanied by improved cardiac function. These results identify tyr-N of VDAC and show that reducing ONOO(-) during cardiac IR injury can attenuate tyr-N of VDAC and improve cardiac function.  相似文献   

20.
12(S)-Hydroxyeicosatetraenoic acid (12-HETE) is one of the metabolites of arachidonic acid involved in pathological conditions associated with mitochondria and oxidative stress. The present study tested effects of 12-HETE on mitochondrial functions. In isolated rat heart mitochondria, 12-HETE increases intramitochondrial ionized calcium concentration that stimulates mitochondrial nitric oxide (NO) synthase (mtNOS) activity. mtNOS-derived NO causes mitochondrial dysfunctions by decreasing mitochondrial respiration and transmembrane potential. mtNOS-derived NO also produces peroxynitrite that induces release of cytochrome c and stimulates aggregation of mitochondria. Similarly, in HL-1 cardiac myocytes, 12-HETE increases intramitochondrial calcium and mitochondrial NO, and induces apoptosis. The present study suggests a novel mechanism for 12-HETE toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号