首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   30篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2016年   5篇
  2015年   8篇
  2014年   7篇
  2013年   9篇
  2012年   12篇
  2011年   7篇
  2010年   5篇
  2009年   6篇
  2008年   3篇
  2007年   9篇
  2006年   5篇
  2005年   8篇
  2004年   11篇
  2003年   3篇
  2002年   9篇
  2001年   8篇
  2000年   4篇
  1999年   7篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   4篇
  1994年   3篇
  1993年   3篇
  1992年   6篇
  1991年   4篇
  1990年   3篇
  1989年   4篇
  1988年   6篇
  1987年   1篇
  1985年   5篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   3篇
  1975年   2篇
  1972年   1篇
排序方式: 共有196条查询结果,搜索用时 750 毫秒
1.
Sorbose and 2-deoxy-D-galactose are taken up in Saccharomyces fragilis by an active transport mechanism, as indicated by the energy requirement of the process and the accumulation of free sugar against the concentration gradient. There are no indications for transport-associated phosphorylation as mechanism of energy coupling with these two sugars. The measured sugar-proton cotransport and the influx inhibition by uncouplers suggest a chemiosmotic coupling mechanism. Thus there are at least two different active transport mechanisms operative in Saccharomyces fragilis: transport-associated phosphorylation in the case of 2-deoxy-D-glucose and chemiosmotic coupling in the case of sorbose and 2-deoxy-D-galactose. The differences between the two mechanisms are discussed. Uncouplers do not stimulate downhill sorbose transport in energy-depleted cells and evoke an almost complete inhibition of efflux and of exchange transport. The differences between this sugar-proton cotransport system and similar systems in bacteria and Chlorella are discussed.  相似文献   
2.
Cultured cells from patients with ataxia telangiectasia (AT) or Nijmegen breakage syndrome (NBS) are hypersensitive to ionizing radiation. After radiation exposure, the rate of DNA replication is inhibited to a lesser extent than in normal cells, whereas the frequency of chromosomal aberrations is enhanced. Both of these features have been used in genetic complementation studies on a limited series of patients. Here we report the results of extended complementation studies on fibroblast strains from 50 patients from widely different origins, using the radioresistant DNA replication characteristic as a marker. Six different genetic complementation groups were identified. Four of these, called AB, C, D, and E (of which AB is the largest), represent patients with clinical signs of AT. Patients having NBS fall into two groups, V1 and V2. An individual with clinical symptoms of both AT and NBS was found in group V2, indicating that the two disorders are closely related. In AT, any group-specific patterns with respect to clinical characteristics or ethnic origin were not apparent. In addition to the radiosensitive ATs, a separate category of patients exists, characterized by a relatively mild clinical course and weak radiosensitivity. It is concluded that a defect in one of at least six different genes may underlie inherited radiosensitivity in humans. To facilitate research on defined defects, a complete list of genetically characterized fibroblast strains is presented.  相似文献   
3.
Photomorphogenetic responses have been studied in a cucumber (Cucumis sativus L.) mutant (lh), which has long hypocotyls in white light (WL). While etiolated seedlings of this mutant have a similar phytochrome content and control of hypocotyl elongation as wild type, deetiolation is retarded and WL-grown seedlings show reduced phytochrome control. Spectrophotometric measurements exhibit that WL-grown tissues of the lh mutant (flower petals and Norflurazon-bleached leaves) contain 35 to 50% of the phytochrome level in the wild type. We propose that this is a consequence of a lack of light-stable phytochrome, in agreement with our hypothesis proposed on the basis of physiological experiments. The lh mutant lacks an end-of-day far-red light response of hypocotyl elongation. This enables the end-of-day far-red light response, clearly shown by the wild type, to be ascribed to the phytochrome, deficient in the lh mutant. Growth experiments in continuous blue light (BL) and continuous BL + red light (RL) show that when RL is added to BL, hypocotyl growth remains inhibited in the wild type, whereas the lh mutant exhibits significant growth promotion compared to BL alone. It is proposed that the hypocotyls fail to grow long in low fluence rate BL because photosynthesis is insufficient to sustain growth.  相似文献   
4.
Summary Ataxia-telangiectasia (A-T) is a progressive autosomal recessive disease featuring neurodegeneration, immunodeficiency, chromosomal instability, radiation sensitivity and a highly increased proneness to cancer. A-T is ethnically widespread and genetically heterogeneous, as indicated by the existence of four complementation groups in this disease. Several A-T-like genetic diseases share various clinical and cellular characteristics with A-T. By using linkage analysis to study North American and Turkish A-O families, the ATA (A-T, complementation group A) gene has been mapped to chromosome 11q23. A number of Israeli Arab A-T patients coming from large, highly inbred families were assigned to group A In one of these families, an additional autosomal recessive disease was identified, characterized by ataxia, hypotonia, microcephaly and bilateral congenital cataracts. In two patients with this syndrome, normal levels of serum immunoglobulins and alpha-fetoprotein, chromosomal stability in peripheral blood lymphocytes and skin fibroblasts, and normal cellular response to treatments with X-rays and the radiomimetic drug neocarzinostatin indicated that this disease does not share, with A-T, any additional features other than ataxia. These tests also showed that another patient in this family, who is also mentally retarded, is affected with both disorders. This conclusion was further supported by linkage analysis with 11q23 markers. Lod scores between A-O and these markers, cumulated over three large Arab families, were significant and confirmed the localization of the ATA gene to aq23. However, another Druze family unassigned to a specific complementation group, showed several recombinants between A-T and the same markers, leaving the localization of the A-T gene in this family open.  相似文献   
5.
Monoclonal antibody DH12, directed against the beta-subunit of the fibronectin receptor recognizes a doublet of proteins (100 and 110 kDa) in Western blots of solubilized whole fibroblasts. Pulse-chase experiments with [35S]methionine in human skin fibroblasts suggested that the two proteins might be metabolically related as precursor (100 kDa) and product (110 kDa). Endo H digestion and [3H]fucose labeling suggested that maturation converted the high-mannose oligosaccharides (100 kDa) to the endoglycosidase H resistant complex type (110 kDa). This was supported by N-glycanase digestion and by chemical deglycosylation which showed a single polypeptide. Surface iodination of intact cells labeled only the presumed mature beta-subunit.  相似文献   
6.
Insulin action leads to the rapid stimulation of a cytosolic Kemptide (Leu-Arg-Arg-Ala-Ser-Leu-Gly) kinase (KIK) that has been recently purified to near homogeneity (Klarlund, J. K., Bradford, A. P., Milla, M. G., and Czech, M. P. (1990) J. Biol. Chem. 265, 227-234). To examine its activation mechanism, purified KIK was treated with purified protein phosphatases. The catalytic subunit of phosphatase 2A inhibited the activity of control KIK by about 50% and abolished the 5-fold elevation in KIK activity due to insulin action. The catalytic subunit of phosphatase 1 with equivalent activity based on dephosphorylation of 32P-labeled phosphorylase alpha had no effect on either control or insulin-stimulated KIK activity. The deactivation of insulin-stimulated KIK by phosphatase 2A was time- and concentration-dependent and was blocked by phosphatase inhibitors. The purified native complexes of phosphatase 2A, phosphatase 2A1, and phosphatase 2A2 similarly deactivated KIK. Analyis of control or insulin-stimulated KIK with two antiphosphotyrosine antibodies by immunoblotting and immunoprecipitation failed to detect the presence of phosphotyrosine in the kinase. These results indicate that KIK is activated by phosphorylation as part of a kinase cascade emanating from insulin receptor stimulation.  相似文献   
7.
Insulin is thought to exert its effects on cellular function through the phosphorylation or dephosphorylation of specific regulatory substrates. We have analyzed the effects of okadaic acid, a potent inhibitor of type 1 and 2A protein phosphatases, on the ability of insulin to stimulate glucose transport in rat adipocytes. Insulin and okadaic acid caused a 20-25- and a 3-6-fold increase, respectively, in the rate of 2-deoxyglucose accumulation by adipose cells. When added to cells previously treated with okadaic acid, insulin failed to stimulate 2-deoxyglucose accumulation beyond the levels observed with okadaic acid alone. Treatment of cells with okadaic acid did not inhibit the effect of insulin to stimulate tyrosine autophosphorylation of its receptor. These results indicate that okadaic acid potently inhibits the effects of insulin to stimulate glucose uptake and/or utilization at a step after receptor activation. To clarify the mechanism of inhibition by okadaic acid, the intrinsic activity of the plasma membrane glucose transporters was analyzed by measuring the rate of uptake of 3-O-methylglucose by adipose cells, and the concentration of adipocyte/skeletal muscle isoform of the glucose transporter (GLUT-4) in plasma membranes isolated from these cells. Insulin caused a 15-20-fold stimulation of 3-O-methylglucose uptake and a 2-3-fold increase in the levels of GLUT-4 detected by immunoblotting of isolated plasma membranes; okadaic acid caused a 2-fold increase in 3-O-methylglucose uptake, and a 1.5-fold increase in plasma membrane GLUT-4. Pretreatment of cells with okadaic acid blocked the effect of insulin to stimulate 3-O-methylglucose uptake and to increase the plasma membrane concentration of GLUT-4 beyond the levels observed with okadaic acid alone. These results indicate that the effect of okadaic acid to inhibit the effect of insulin on glucose uptake is exerted at a step prior to the recruitment of glucose transporters to the cell surface, and suggest that a phosphatase activity may be critical for this process.  相似文献   
8.
9.
The degradation of glutathione (GSH) in the yeast Saccharomyces cerevisiae appears to be mediated only by γ-glutamyltranspeptidase and cysteinylglycine dipeptidase. Other enzymes of the γ-glutamyl cycle, γ-glutamyl cyclotransferase and 5-oxo-l-prolinase, are not present in the yeast. In vivo transpeptidation was shown in the presence of a high intracellular level of γ-glutamyltranspeptidase, but only when the de-repressing nitrogen source was a suitable acceptor of the transferase reaction. In contrast, when the de-repressing source was not an acceptor of the transferase reaction (e.g. urea), only glutamate was detected. Intracellular GSH is virtually inert when the level of γ-glutamyltranspeptidase is low. Possible roles for in vivo transpeptidation are discussed.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号