首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   5篇
  2024年   2篇
  2023年   2篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   4篇
  2017年   4篇
  2016年   6篇
  2015年   2篇
  2014年   3篇
  2013年   4篇
  2012年   8篇
  2011年   12篇
  2010年   3篇
  2009年   1篇
  2008年   3篇
  2007年   4篇
  2006年   4篇
  2005年   2篇
  2004年   5篇
  2003年   1篇
  1998年   1篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
排序方式: 共有86条查询结果,搜索用时 109 毫秒
1.
Using the reverse phase high-performance liquid chromatography (HPLC) with mobile phases composed of simple acids, we have developed an assay technique for the measurement of adrenolutin, one of the oxidation products of catecholamines, in rat plasma. Ion-pairing chromatography permits the separation and quantitation of plasma adrenolutin (M) in a linear manner. Sample preparation involved the precipitation of plasma proteins with perchloric acid and it is easier to handle a large number of samples at a time. However, we were unable to demonstrate the presence of adrenochrome, another oxidation product of catecholamines, in plasma since adrenochrome was rapidly destroyed in acid as well as in blood and was quickly changed, into adrenolutin. Adrenolutin peak in HPLC was confirmed by 1) the retention time; 2) co-injection of adrenolutin and; 3) the appearance of 3H-adrenolutin after injection of 3H-norepinephrine. Administration of different catecholamines as well as adrenochrome and adrenolutin in rats also increased the level of adrenolutin in plasma. Adrenolutin was found to be present in plasma in other species including dog, rabbit and pig. High level of adrenolutin, which may represent total concentration of aminolutin in plasma, suggests the presence of an efficient mechanism for the oxidation of catecholamines under in vivo conditions.  相似文献   
2.
The garnet-type phase Li7La3Zr2O12 (LLZO) attracts significant attention as an oxide solid electrolyte to enable safe and robust solid-state batteries (SSBs) with potentially high energy density. However, while significant progress has been made in demonstrating compatibility with Li metal, integrating LLZO into composite cathodes remains a challenge. The current perspective focuses on the critical issues that need to be addressed to achieve the ultimate goal of an all-solid-state LLZO-based battery that delivers safety, durability, and pack-level performance characteristics that are unobtainable with state-of-the-art Li-ion batteries. This perspective complements existing reviews of solid/solid interfaces with more emphasis on understanding numerous homo- and heteroionic interfaces in a pure oxide-based SSB and the various phenomena that accompany the evolution of the chemical, electrochemical, structural, morphological, and mechanical properties of those interfaces during processing and operation. Finally, the insights gained from a comprehensive literature survey of LLZO–cathode interfaces are used to guide efforts for the development of LLZO-based SSBs.  相似文献   
3.
Mutations in REarranged during Transfection (RET) receptor tyrosine, followed by the oncogenic activation of RET kinase is responsible for the development of medullary thyroid carcinoma (MTC) that responds poorly to conventional chemotherapy. Targeting RET, therefore, might be useful in tailoring surveillance of MTC patients. Here we showed that theaflavins, the bioactive components of black tea, successfully induced apoptosis in human MTC cell line, TT, by inversely modulating two molecular pathways: (i) stalling PI3K/Akt/Bad pathway that resulted in mitochondrial transmembrane potential (MTP) loss, cytochrome-c release and activation of the executioner caspases-9 and -3, and (ii) upholding p38MAPK/caspase-8/caspase-3 pathway via inhibition of Ras/Raf/ERK. Over-expression of either constitutively active myristoylated-Akt-cDNA (Myr-Akt-cDNA) or dominant-negative-caspase-8-cDNA (Dn-caspase-8-cDNA) partially blocked theaflavin-induced apoptosis, while co-transfection of Myr-Akt-cDNA and Dn-caspase-8-cDNA completely eradicated the effect of theaflavins thereby negating the possibility of existence of other pathways. A search for the upstream signaling revealed that theaflavin-induced disruption of lipid raft caused interference in anchorage of RET in lipid raft that in turn stalled phosphorylation of Ras and PI3Kinase. In such anti-survival cellular micro-environment, pro-apoptotic signals were triggered to culminate into programmed death of MTC cell. These findings not only unveil a hitherto unexplained mechanism underlying theaflavin-induced MTC death, but also validate RET as a promising and potential target for MTC therapy.  相似文献   
4.
5.

Background

Blood Pressure related disease affected 118 million people in India in the year 2000; this figure will double by 2025. Around one in four adults in rural India have hypertension, and of those, only a minority are accessing appropriate care. Health systems in India face substantial challenges to meet these gaps in care, and innovative solutions are needed.

Methods

We hypothesise that a multifaceted intervention involving capacity strengthening of primary healthcare doctors and non-physician healthcare workers through use of a mobile device-based clinical decision support system will result in improved blood pressure control for individuals at high risk of a cardiovascular disease event when compared with usual healthcare. This intervention will be implemented as a stepped wedge, cluster randomised controlled trial in 18 primary health centres and 54 villages in rural Andhra Pradesh involving adults aged ≥40 years at high cardiovascular disease event risk (approximately 15,000 people). Cardiovascular disease event risk will be calculated based on World Health Organisation/International Society of Hypertension’s region-specific risk charts. Cluster randomisation will occur at the level of the primary health centres. Outcome analyses will be conducted blinded to intervention allocation.

Expected outcomes

The primary study outcome is the difference in the proportion of people meeting guideline-recommended blood pressure targets in the intervention period vs. the control period. Secondary outcomes include mean reduction in blood pressure levels; change in other cardiovascular disease risk factors, including body mass index, current smoking, reported healthy eating habits, and reported physical activity levels; self-reported use of blood pressure and other cardiovascular medicines; quality of life (using the EQ-5D); and cardiovascular disease events (using hospitalisation data). Trial outcomes will be accompanied by detailed process and economic evaluations.

Significance

The findings are likely to inform policy on a scalable strategy to overcome entrenched inequities in access to effective healthcare for under-served populations in low and middle income country settings.

Trial registration

Clinical Trial Registry India CTRI/2013/06/003753.
  相似文献   
6.
Stem cells are a promising cell source for regenerative medicine due to their characteristics of self‐renewal and differentiation. The intricate balance between these two cell fates is maintained by precisely controlled symmetric and asymmetric cell divisions. Asymmetric division has a fundamental importance in maintaining tissue homeostasis and in the development of multi‐cellular organisms. For example, during development, asymmetric cell divisions are responsible for the formation of the body axis. Mechanistically, mitotic spindle dynamics determine the assembly and separation of chromosomes and regulate the orientation of cell division. Interestingly, symmetric and asymmetric cell division is not mutually exclusive and a range of factors are involved in such cell‐fate decisions, the measurement of which can provide efficient and reliable information on the regenerative potential of a cell. The balance between self‐renewal and differentiation in stem cells is controlled by various biophysical and biochemical cues. Although the role of biochemical factors in asymmetric stem cell division has been widely studied, the effect of biophysical cues in stem‐cell self‐renewal is not comprehensively understood. Herein, we review the biological relevance of stem‐cell asymmetric division to regenerative medicine and discuss the influences of various intrinsic and extrinsic biophysical cues in stem‐cell self‐renewal. This review particularly aims to inform the clinical translation of efforts to control the self‐renewal ability of stem cells through the tuning of various biophysical cues.  相似文献   
7.
Polarization sensitivity is introduced into oriented bacteriorhodopsin (BR) films through a photochemical bleaching process, which chemically modifies the structure of the purple membrane by breaking the intrinsic symmetry of the membrane-bound BR trimers. The resulting photovoltage generated in an indium-tin oxide (ITO)/BR/ITO detector is found to be anisotropic with respect to cross-polarized probe beams. A model, based on the polarization dependent photoselection of the BR molecules qualitatively explains the photochemical bleaching process and the observed anisotropic response. The effect reported here can be used to construct a polarization sensitive BR-based bio-photoreceiver.  相似文献   
8.
Digestion of hemoglobin in the food vacuole of the malaria parasite produces very high quantities of redox active toxic free heme. Hemozoin (beta-hematin) formation is a unique process adopted by Plasmodium sp. to detoxify free heme. Hemozoin formation is a validated target for most of the well-known existing antimalarial drugs and considered to be a suitable target to develop new antimalarials. Here we discuss the possible mechanisms of free heme detoxification in the malaria parasite and the mechanistic details of compounds, which offer antimalarial activity by inhibiting hemozoin formation. The chemical nature of new antimalarial compounds showing antimalarial activity through the inhibition of hemozoin formation has also been incorporated, which may help to design future antimalarials with therapeutic potential against multi-drug resistant malaria.  相似文献   
9.
Matrix metalloproteinases (MMPs) are suggested to play a critical role in extracellular matrix degradation and remodeling during inflammation and wound healing processes. However, the role of MMPs in indomethacin-induced gastric ulcer and its healing process are not clearly understood. This study is aimed at determining the regulation of MMP-9 and -2 activities in indomethacin-induced acute gastric ulceration and healing. Indomethacin-ulcerated stomach extracts exhibit significant up-regulation of pro-MMP-9 (92 kDa) activity and moderate reduction of MMP-2 activity, which strongly correlate with indomethacin dose and severity of ulcer. The anti-inflammatory and antioxidant properties of curcumin, an active component of turmeric, suggest that curcumin may exert antiulcer activity through scavenging reactive oxygen species, by regulating MMP activity, or both. To test these possibilities, the effect of curcumin in indomethacin-induced gastric ulcer is examined by biochemical and histological methods. The results show that curcumin exhibits potent antiulcer activity in acute ulcer in rat model by preventing glutathione depletion, lipid peroxidation, and protein oxidation. Denudation of epithelial cells during damage of gastric lumen is reversed by curcumin through re-epithelialization. Furthermore, both oral and intraperitoneal administration of curcumin blocks gastric ulceration in a dose-dependent manner. It accelerates the healing process and protects gastric ulcer through attenuation of MMP-9 activity and amelioration of MMP-2 activity. Omeprazole, an established antiulcer drug does not inhibit MMP-9 while protecting indomethacin-induced gastric ulcer. We conclude that antiulcer activity of curcumin is primarily attributed to MMP-9 inhibition, one of the major path-ways of ulcer healing.  相似文献   
10.
A block copolymer of a hyperbranched poly(ethylene glycol)-like core and linear polyethylenimine (HBP) was synthesized by a facile synthetic route that included (1) a single-step cationic copolymerization of diepoxy and polyhydroxyl monomers, (2) derivatization of hydroxyl groups of the core HBPEG copolymer with either tosyl or chloromethylbenzoyl chlorides resulting in a corresponding macroinitiator, and (3) synthesis of HBPEG-block-poly(alkyl oxazolines). HBPEG-block-linear polyethyleneimine (HBP) was obtained by hydrolysis of HBPEG-block-poly(alkyl oxazolines). Linear PEI-bearing hyperbranched polycations (HBP) had lower inherent toxicity in cell culture than PEG-grafted linear polyethyleneimines (PEGLPEI). PEGLPEI formed a complex with DNA with an average diameter of 250 nm. The complexes were loosely condensed and formed aggregates and precipitates during storage. By contrast, hyperbranched polycations (HBP) formed approximately 50 nm nanocomplexes with DNA that were stable for several weeks and showed resistance to DNAse I-mediated degradation. The 'inverted' block copolymers showed several orders of magnitude higher transfection efficiency than PEGLPEI in vitro. Because of the biocompatibility and higher transfection efficiency, the 'inverted' block copolymer merits further investigation as a gene carrier.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号