首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   2篇
  2014年   2篇
  2013年   5篇
  2012年   3篇
  2011年   3篇
  2010年   2篇
  2007年   4篇
  2006年   4篇
  2005年   1篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2000年   1篇
  1999年   1篇
  1994年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
排序方式: 共有40条查询结果,搜索用时 15 毫秒
1.
2.
3.
Human CD93, a receptor for complement component 1, subcomponent q phagocytosis (C1qRp), has been shown to be selectively expressed by cells of a myeloid lineage and was originally reported to be involved in the C1q-mediated enhancement of phagocytosis in innate and adaptive immune responses. The modulation of CD93 expression has been investigated in various cells, particularly in granulocytes and monocytes . We previously reported that a protein kinase C activator (PKC), phorbol myristate acetate (PMA), effectively up-regulated CD93 expression on several cultured cell lines and that its regulation was mainly controlled by a PKC delta-isoenzyme. However, the expression pattern of CD93 in myeloid cells with apoptotic properties remains poorly understood. In this study, we examined the modulation of CD93 expression on a human monocyte-like cell line (U937) treated with various apoptosis-inducing chemical substances : an RNA-synthesis inhibitor, actinomycin D (ActD); a DNA topoisomerase I inhibitor, camptothecin (CPT); a protein-synthesis inhibitor, cycloheximide (CHX); a DNA topoisomerase II inhibitor, etoposide (EPS); and a DNA-synthesis inhibitor, mitomycin C (MMC). Apoptosis was monitored using two-color flow cytometry with Annexin V and 7-amino actinomycin D (7AAD). The above-mentioned substances sufficiently induced the early and late stages of apoptosis, identified as Annexin V positive (+)/7AAD negative (-) cells and Annexin V positive (+)/7AAD positive (+) cells, respectively, in U937 cells after 6 hr of treatment. The modulation of CD93 expression on U937 cells during the early stage of apoptosis, gated as Annexin V positive (+)/7AAD negative (-) cells, was then investigated using a CD93 mAb (mNI-11), originally established in our laboratories, and flow cytometry using a fluorescence-activated cell sorter (FACS). The mean fluorescence intensity (MFI) of the cells that stained positive for CD93 mAb (mNI-11) among the treated U937 cells showed a dramatic decrease in expression. In addition, the expressions of HLA-class I (HLA-A, B, C), HLA-class II (HLA-DR), CD18 (lymphocyte function-associated antigen-1 beta; LFA-1beta) and CD54 (intercellular adhesion molecule-1; ICAM-1) were also markedly decreased on the treated U937 cells identified as Annexin V positive (+)/7AAD negative (-) cells (early stage of apoptosis). Interestingly, the expression patterns of CD93 on the U937 cells treated with the above-mentioned chemical substances closely resembled those of HLA-class I (HLA-A, B, C). An immunoblotting analysis showed that the expression of a surface antigen (molecular size, about 97 kDa) targeted by the CD93 mAb (mNI-11) on the U937 cells treated with various apoptosis-inducing chemical substances had clearly decreased. On the other hand, an enzyme-linked immunoassay (EIA) showed that although PMA-treated U937 cells had strongly secreted soluble CD93 (sCD93) into the culture supernatant, the secretion of sCD93 in the culture supernatant of the U937 cells treated with the above-mentioned chemical substances was not enhanced, compared with that of untreated U937 cells. Importantly, however , the U937 cells with apoptotic properties induced by various apoptosis-inducing chemical substances also rapidly (in 30 min) and strongly secreted sCD93 into the culture supernatant in the presence of PMA. Taken together, these findings indicate that the expression of the CD93 molecule identified by CD93 mAb (mNI-11) is dramatically decreased on U937 cells with apoptotic properties, and that the decrease in CD93 expression on U937 cells treated with apoptosis-inducing chemical substances may be a good model for analyzing the regulation of CD93 expression on apoptotic myeloid cells.  相似文献   
4.
Mitochondria divide and fuse continuously, and the balance between these two processes regulates mitochondrial shape. Alterations in mitochondrial dynamics are associated with neurodegenerative diseases. Here we investigate the physiological and cellular functions of mitochondrial division in postmitotic neurons using in vivo and in vitro gene knockout for the mitochondrial division protein Drp1. When mouse Drp1 was deleted in postmitotic Purkinje cells in the cerebellum, mitochondrial tubules elongated due to excess fusion, became large spheres due to oxidative damage, accumulated ubiquitin and mitophagy markers, and lost respiratory function, leading to neurodegeneration. Ubiquitination of mitochondria was independent of the E3 ubiquitin ligase parkin in Purkinje cells lacking Drp1. Treatment with antioxidants rescued mitochondrial swelling and cell death in Drp1KO Purkinje cells. Moreover, hydrogen peroxide converted elongated tubules into large spheres in Drp1KO fibroblasts. Our findings suggest that mitochondrial division serves as a quality control mechanism to suppress oxidative damage and thus promote neuronal survival.  相似文献   
5.
In this study, modulation of the surface antigens of Salmonella enteritidis-phagocytized U937 cells and morphology of the bacteria in these cells were analyzed by the indirect immunofluorescence technique. The results are as follows: (1) Morphological studies revealed that the bacteria phagocytized by the U937 cells were transformed to a small coccoid form. (2) The expression of CD14 antigen was observed 24 to 48 h after phagocytosis. (3) The levels of CD11b and CD23 antigens were clearly enhanced 48 h after phagocytosis. (4) No modulation of HLA-class II (DR, DQ and DP) antigens was observed after phagocytosis.  相似文献   
6.
NADPH-dependent alkenal/one oxidoreductase (Aor) was discovered to be highly inducible in rat liver following treatment with the cancer chemopreventive agent 3H-1, 2-dithiole-3-thione. Aor was further characterized as an Nrf2-regulated antioxidative enzyme that reduces carbon-carbon double bonds in a variety of alpha, beta-unsaturated aldehydes and ketones. 15-Deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2) is a reactive membrane lipid metabolite that activates multiple pathways, including Nrf2-mediated induction of cytoprotective enzymes. Physiologically, it is postulated that 15d-PGJ2 alkylates key regulatory proteins via the electrophilic carbon centers found in two alpha, beta-unsaturated ketone moieties. This current study addresses the metabolism of 15d-PGJ2 by rat Aor (rAor) and subsequent deactivation of the Nrf2 signaling pathway by both rat and human AOR. We demonstrate that induction of NADPH-dependent quinone oxidoreductase activity by 15d-PGJ2 is markedly attenuated in mouse embryonic fibroblasts that overexpress rAor. Luciferase reporter assay and quantitative real-time PCR confirmed these findings. Concentrations required for doubling the NADPH-dependent quinone oxidoreductase response are increased from 1.8 microm in wild-type to >10 microm in rat Aor transgenic fibroblasts. 15d-PGJ2 is metabolized by recombinant rAor with a Km of 9.6 microm and k(cat) of 18.5 min(-1). The major product is 12,13-dihydro-15-deoxy-Delta12,14-prostaglandin J2 (dihydro-15d-PGJ2). The reduction of C=C by Aor yielding dihydro-15d-PGJ2 abolishes the inducibility in an antioxidant response element-driven luciferase assay. Collectively, these results demonstrate that 15d-PGJ2 can be catabolized by Aor, thereby attenuating subsequent Nrf2 signaling and possibly inflammatory and apoptotic processes also influenced by 15d-PGJ2.  相似文献   
7.
8.
9.
Mouse embryonic fibroblasts derived from Nrf2-/- mice (N0) and Nrf2+/+ mice (WT) have been used to characterize both basal and diquat (DQ)-induced oxidative stress levels and to examine Nrf2 activation during exposure to DQ-generated superoxide anion. Microarray analysis revealed that N0 cells have similar constitutive mRNA expression of genes responsible for the direct metabolism of reactive oxygen species but decreased expression of genes responsible for the production of reducing equivalents, repair of oxidized proteins and defense against lipid peroxidation, compared to WT cells. Nonetheless, the basal levels of ROS flux and oxidative damage biomarkers in WT and N0 cells were not different. Diquat dibromide (DQ), a non-electrophilic redox cycling bipyridylium herbicide, was used to generate intracellular superoxide anion. Isolated mitochondria from both cell lines exposed to DQ produced equivalent amounts of ROS, indicating a similar cellular capacity to generate ROS. However, N0 cells exposed to DQ for 24-h exhibited markedly decreased cell viability and aconitase activity as well as increased lipid peroxidation and glutathione oxidation, relative to WT cells. 2',7'-Dichlorofluorescein fluorescence was not increased in WT and N0 cells after 30-min of DQ exposure. However, increased levels of ROS were detected in N0 cells but not WT cells after 13-h of DQ treatment. Additionally, total glutathione concentrations increased in WT, but not N0 cells following a 24-h exposure to DQ. DQ exposure resulted in activation of an antioxidant response element-luciferase reporter gene, as well as induction of Nrf2-regulated genes in WT, but not N0 cells. Thus the enhanced sensitivity of N0 cells does not reflect basal differences in antioxidative capacity, but rather an impaired ability to mount an adaptive response to sustained oxidative stress.  相似文献   
10.
Human CD93, also known as complement protein 1, q subcomponent, receptor (C1qRp), is selectively expressed by cells with a myeloid lineage, endothelial cells, platelets, and microglia and was originally reported to be involved in the complement protein 1, q subcomponent (C1q)-mediated enhancement of phagocytosis. The intracellular molecular events responsible for the regulation of its expression on the cell surface, however, have not been determined. In this study, the effect of protein kinases in the regulation of CD93 expression on the cell surface of a human monocyte-like cell line (U937), a human NK-like cell line (KHYG-1), and a human umbilical vein endothelial cell line (HUV-EC-C) was investigated using four types of protein kinase inhibitors, the classical protein kinase C (cPKC) inhibitor Go6976, the novel PKC (nPKC) inhibitor Rottlerin, the protein kinase A (PKA) inhibitor H-89 and the protein tyrosine kinase (PTK) inhibitor herbimycin A at their optimum concentrations for 24 hr. CD93 expression was analyzed using flow cytometry and glutaraldehyde-fixed cellular enzyme-linked immunoassay (EIA) techniques utilizing a CD93 monoclonal antibody (mAb), mNI-11, that was originally established in our laboratory as a CD93 detection probe. The nPKC inhibitor Rottlerin strongly down-regulated CD93 expression on the U937 cells in a dose-dependent manner, whereas the other inhibitors had little or no effect. CD93 expression was down-regulated by Go6976, but not by Rottlerin, in the KHYG-1 cells and by both Rottlerin and Go6976 in the HUV-EC-C cells. The PKC stimulator, phorbol myristate acetate (PMA), strongly up-regulated CD93 expression on the cell surface of all three cell-lines and induced interleukin-8 (IL-8) production by the U937 cells and interferon-gamma (IFN-gamma) production by the KHYG-1 cells. In addition, both Go6976 and Rottlerin inhibited the up-regulation of CD93 expression induced by PMA and IL-8 or IFN-gamma production in the respective cell-lines. Whereas recombinant tumor necrosis factor-alpha (rTNF-alpha) slightly up-regulated CD93 expression on the U937 cells, recombinant interleukin-1beta (rIL-1beta), recombinant interleukin-2 (rIL-2), recombinant interferon-gamma (rIFN-gamma) and lipopolysaccharide (LPS) had no effect. Taken together, these findings indicate that the regulation of CD93 expression on these cells involves the PKC isoenzymes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号