首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   9篇
  2023年   1篇
  2021年   3篇
  2020年   1篇
  2019年   4篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   6篇
  2014年   9篇
  2013年   6篇
  2012年   5篇
  2011年   2篇
  2010年   10篇
  2009年   5篇
  2008年   4篇
  2007年   3篇
  2006年   4篇
  2005年   2篇
  2004年   6篇
  2003年   5篇
  2002年   7篇
  2001年   3篇
  1998年   1篇
  1996年   2篇
  1995年   1篇
  1983年   2篇
  1981年   1篇
  1965年   1篇
  1964年   1篇
排序方式: 共有100条查询结果,搜索用时 62 毫秒
1.
Phospholipase A2 activity was studied in isolated human endometrial predecidual cells, and in human endometrium collected from day 19–23 of the menstrual cycle, by performing a radiochemical assay. Phospholipase A2 activity on day 20 was significantly higher than other days (P < 0.001), and the activity was found to gradually decrease after day 20 of the menstrual cycle. The effects of the hormones estradiol and progesterone, and antihormones tamoxifen and RU 486, were studied on the phospholipase A2 activity in isolated predecidual stromal cells. Estradiol produced a significant stimulatory effect (P < 0.001) on phospholipase A2 activity in predecidual cells, and this effect was antagonized by tamoxifen. The combination of estradiol and tamoxifen was significantly different from estradiol alone (P < 0.001), but not from tamoxifen alone. RU 486 alone significantly increased (P < 0.001) phospholipase A2 activity in predecidual stromal cells. However, progesterone had no effect on phospholipase A2 activity in predecidual stromal cells.  相似文献   
2.
International Journal of Peptide Research and Therapeutics - The lysosomal endoprotease legumain (asparaginyl endoprotease) has been proposed as a putative biomarker in prostate tumours, in which...  相似文献   
3.
Structural analysis of stigma development in sunflower highlights the secretory role of papillae due to its semi-dry nature. Production of lipid-rich secretions is initiated at the staminate stage of the flowers in stigma development and increases at the receptive stage, coinciding with an extensive development of elaioplasts and endoplasmic reticulum network in the basal region of the papillae. Transfer cells, earlier identified only in the wet type of stigma, are also present in the transmitting tissue of the sunflower stigma. Attainment of physiological maturity by the stigmatic tissue, accompanying development from bud to pistillate stage, appears to affect the initial steps of pollen–stigma interaction. The nature of self-incompatibility in Helianthus has also been investigated in relation with pollen adhesion, hydration and germination. Pollen adhesion to the stigma is a rapid process in sunflower and stigma papillae exhibit greater affinity for pollen during cross pollination as compared to self-pollination. Components of the pollen coat and the pellicle on the surface of stigmatic papillae are critical for the initial phase of pollen–stigma interaction (adhesion and hydration). The lipidic components of pollen coat and the proteinaceous and lipidic components from the surface of the papillae coalesce during adhesion, leading to the movement of water from stigma to the pollen, thereby causing pollen hydration and its subsequent germination. Pollen germination (both in self-and cross-pollen) on the stigma surface and the growth of the pollen tube characterize the flexibility of self-incompatibility in sunflower. Compatible pollen grains germinate and the pollen tube penetrates the stigma surface to enter the nutrient-rich transmitting tissue. The pollen tube from incompatible pollen germination, however, fails to penetrate the stigmatic tissue and it grows parallel to the papillae. Present findings provide new insights into structural and functional relationships during stigma development and pollen–stigma interaction.  相似文献   
4.
5.
N-ethylmaleimide (NEM) impairs the ATPase function of N-terminal NBD of Candida drug resistance gene product Cdr1p. To identify the reactive cysteine(s) for such a contribution, we adopted a three-arm approach that included covalent modification, cysteine mutagenesis, and structure homology modeling. The covalent modification results clearly indicate the ability of NEM and iodoacetic acid (IAA) to potently inhibit the ATPase activity of N-terminal NBD. Since this domain contains five cysteine residues in its sequence, we mutated each and found four of these (C325A, C363A, C402A, and C462A) to stay sensitive to NEM/IAA modification and influence ATPase activity, while C193A mutation completely abrogated the catalytic function. The structural homology modeling data further validate these biochemical findings by ruling out any plausible interactions within the cysteine residues, and deriving the importance of Cys-193 in lying at a bond length clearly feasible to interact with ATP and divalent cation to critically influence ATP hydrolysis.  相似文献   
6.
Two cultivars of French bean (Phaseolus vulgaris L.) viz. contender and arka komal were planted in polythene bags containing sand and grown under glasshouse conditions. The nodulation status, shoot/root biomass, activities of several nodule enzymes, total soluble protein and leghaemoglobin contents were monitored over the entire growth period. Allantoinase activity in leaves was measured to monitor the ureide degrading capacity. Significant genotype difference was observed in both the cultivars. All the parameters showed a decline after flowering except uricase, which declined before flowering. Malate dehydrogenase and isocitrate dehydrogenase showed a constant decline throughout the growth period. Degree of decline varied with the genotype for all the parameters. Leghaemoglobin content, PEP carboxylase activity and ureide degrading capacity of leaves did not show an appreciable decline in contender and were significantly higher than in arka komal. These factors can be used to increase nitrogen fixation in French bean.  相似文献   
7.
Until now, there has been no conclusive demonstration of any in vivo oleosin degradation at the early stages of oil body mobilization. The present work on sunflower (Helianthus annuus L.) has demonstrated limited oleosin degradation during seed germination. Seedling cotyledon homogenization in Tris-urea buffer, followed by SDS-PAGE, revealed three oleosins (16, 17.5 and 20 kDa). Incubation of oil bodies with total soluble protein from 4-day-old seedlings resulted in oleosin degradation. In vitro and in vivo degradation of the 17.5-kDa oleosin was faster than the other two, indicating its greater susceptibility to proteolysis. Oleosin degradation by the total soluble protein resulted in a transient 14.5-kDa polypeptide, followed by an 11-kDa protease-protected fragment, which appeared post-germinatively and accumulated corresponding to increased rate of lipid mobilization. A 65-kDa protease, active at pH 7.5-9.5, was zymographically detected in the total soluble protein. Its activity increased along with in vivo accumulation of the protease-protected fragment during seed germination and accompanying lipid mobilization. Protease-treated oil bodies were more susceptible to maize lipase action. Differential proteolytic sensitivity of different oleosins in the oil body membranes could be a determinant of oil body longevity during seed germination.  相似文献   
8.
Auxin (indole-3-acetic acid) regulates caulonema differentiation as a result of gradual transitional events in the chloronema tip cells in moss protonema. This auxin action in the moss Funaria hygrometrica involves a rapid influx of calcium ions from the extracellular medium. This investigation demonstrates spatial and temporal changes in calmodulin (CaM) activation (formation of Ca(2+)-CaM complex) in the chloronema tip cells subjected to auxin treatment. Photomicroscopic localisation of the fluorescence (excitation at 365 nm and emission of 397 nm) from the tricomplex of Ca(2+)-CaM with trifluoperazine (TFP, a blocker of Ca(2+)-CaM action) shows a tip to base (tip high) gradient of Ca(2+)-CaM in the chloronema tip cells. Comparison of Ca(2+)-CaM-TFP fluorescence over time in the chloronema tip cells of wild type Funaria with the response in an auxin overproducer mutant (86.1) and an auxin deficient mutant (87.13) reveals the involvement of auxin in calmodulin activation as a rapid response prior to cell differentiation.  相似文献   
9.
A noteworthy metabolic signature accompanying oil body (OB) biogenesis during oilseed development is associated with the modulation of the oil body membranes proteins. Present work focuses on 2-dimensional polyacrylamide gel electrophoresis (2-D PAGE)-based analysis of the temporal changes in the OB membrane proteins analyzed by LC-MS/MS accompanying the onset of desiccation (20–30 d after anthesis; DAA) in the developing seeds of sunflower (Helianthus annuus L.). Protein spots unique to 20–30 DAA stages were picked up from 2-D gels for identification and the identified proteins were categorized into 7 functional classes. These include proteins involved in energy metabolism, reactive oxygen scavenging, proteolysis and protein turnover, signaling, oleosin and oil body biogenesis-associated proteins, desiccation and cytoskeleton. At 30 DAA stage, exclusive expressions of enzymes belonging to energy metabolism, desiccation and cytoskeleton were evident which indicated an increase in the metabolic and enzymatic activity in the cells at this stage of seed development (seed filling). Increased expression of cruciferina-like protein and dehydrin at 30 DAA stage marks the onset of desiccation. The data has been analyzed and discussed to highlight desiccation stage-associated metabolic events during oilseed development.  相似文献   
10.
Dendritic cell (DC) activation by nucleic acid-containing IgG complexes is implicated in systemic lupus erythematosus (SLE) pathogenesis. However, it has been difficult to definitively examine the receptors and signaling pathways by which this activation is mediated. Because mouse FcgammaRs recognize human IgG, we hypothesized that IgG from lupus patients might stimulate mouse DCs, thereby facilitating this analysis. In this study, we show that sera and purified IgG from lupus patients activate mouse DCs to produce IFN-alpha, IFN-beta, and IL-6 and up-regulate costimulatory molecules in a FcgammaR-dependent manner. This activation is only seen in sera with reactivity against ribonucleoproteins and is completely dependent on TLR7 and the presence of RNA. As anticipated, IFN regulatory factor (IRF)7 is required for IFN-alpha and IFN-beta production. Unexpectedly, however, IRF5 plays a critical role in IFN-alpha and IFN-beta production induced not only by RNA-containing immune complexes but also by conventional TLR7 and TLR9 ligands. Moreover, DC production of IL-6 induced by these stimuli is dependent on a functional type I IFNR, indicating the need for a type I IFN-dependent feedback loop in the production of inflammatory cytokines. This system may also prove useful for the study of receptors and signaling pathways used by immune complexes in other human diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号