首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   0篇
  2013年   2篇
  2012年   1篇
  2010年   1篇
  2008年   2篇
  2007年   4篇
  2006年   3篇
  2003年   2篇
  2002年   1篇
  2000年   1篇
  1994年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1979年   3篇
  1978年   2篇
  1973年   2篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
1.
The effect of temperature on the maximum specific growth rate and the cell yield was studied during cultivation of two bacterial strains (LPM-4 and Pseudomonas sp. LPM-410) on EDTA under unlimited cell growth conditions in a pH-auxostat. Both strains displayed linear dependence of reciprocal biomass yield against reciprocal specific growth rate, from which the values of rate of substrate expenditure for cell maintenance and the “maximum” yield (i.e., hypothetical yield without cell maintenance processes) were estimated. Analysis of the maximum yield values based on mass–energy balance theory suggested that oxidation of the carboxylic acid side chains of EDTA by a monooxygenase had zero or low energetic efficiency. An Arrhenius equation with different values of Arrhenius parameters within different temperature ranges gave a good fit with the temperature dependence of both growth rate and biomass yield. Specific growth rates of both strains showed a more pronounced temperature dependence than did the cell yields. A possible kinetic mechanism was suggested which might be responsible for the modes of the temperature dependences of specific growth rate and yield that were found. The mechanism is based on a hypothetical key substance governing the metabolic flows, which is formed in a zero-order reaction and destroyed in a first-order reaction, both rate constants depending on temperature according to the Arrhenius law.  相似文献   
2.
A mathematical model has been considered in which the known equation of McKendrick and Von Foerster for cell age distribution is combined with that for substrate concentration. The dependence of cell division rate on cell age has been taken as a step function. The interrelation between culture parameters describing the substrate consumption and cell division has been found. The shape of cell age distribution as well as the values of substrate and cell concentrations in steady and transient states have been investigated. Stationary regimes at the initial culture state synchronized by ages have been found to be established as damped oscillations and age waves. Under definite conditions the transition from one steady growth regime to another includes sharp single-time age synchronization of the culture.  相似文献   
3.
4.
We previously reported that fragments of exogenous double-stranded DNA can be internalized by mouse bone marrow cells without any transfection. Our present analysis shows that only 2% of bone marrow cells take up the fragments of extracellular exogenous DNA. Of these, ~ 45% of the cells correspond to CD34 + hematopoietic stem cells. Taking into account that CD34 + stem cells constituted 2.5% of the total cell population in the bone marrow samples analyzed, these data indicate that as much as 40% of CD34 + cells readily internalize fragments of extracellular exogenous DNA. This suggests that internalization of fragmented dsDNA is a general feature of poorly differentiated cells, in particular CD34 + bone marrow cells.  相似文献   
5.
Degradation of EDTA (ethylenediaminetetraacetic acid) or metal-EDTA complexes by cell suspensions of the bacterial strain DSM 9103 was studied. The activity of EDTA degradation was the highest in the phase of active cell growth and decreased considerably in the stationary phase, after substrate depletion in the medium. Exponential-phase cells were incubated in HEPES buffer (pH 7.0) with 1 mM of uncomplexed EDTA or EDTA complexes with Mg2+, Ca2+, Mn2+, Pb2+, Co2+, Cd2+, Zn2+, Cu2+, or Fe3+. The metal-EDTA complexes (Me-EDTA) studied could be divided into three groups according to their degradability. EDTA complexes with stability constants K below 10(16) (lg K < 16), such as Mg-EDTA, Ca-EDTA, and Mn-EDTA, as well as uncomplexed EDTA, were degraded by the cell suspensions at a constant rate to completion within 5-10 h of incubation. Me-EDTA complexes with lg K above 16 (Zn-EDTA, Co-EDTA, Pb-EDTA, and Cu-EDTA) were not completely degraded during a 24-hour incubation, which was possibly due to the toxic effect of the metal ions released. No degradation of Cd-EDTA or Fe(III)-EDTA by cell suspensions of strain DSM 9103 was observed under the conditions studied.  相似文献   
6.
Material and energy balances for fermentation processes are developed based on the facts that the heat of reaction per electron transferred to oxygen for a wide variety of organic molecules, the number of available electrons per carbon atom in biomass, and the weight fraction carbon in biomass are relatively constant. Mass-energy balance equations are developed which relate the biomass energetic yield coefficient to sets of variables which may be determined experimentally. Organic substrate consumption, biomass production, oxygen consumption, carbon dioxide production, heat evolution, and nitrogen consumption are considered as measured variables. Application of the balances using direct and indirect methods of yield coefficient estimation is illustrated using experimental results from the literature. Product formation is included in the balance equations and the effect of product formation on biomass yield estimates is examined. Application of mass-energy balances in the optimal operation of continuous single-cell protein production facilities is examined, and the variation of optimal operating conditions with changes in yield are illustrated for methanol as organic substrate.  相似文献   
7.
The ability of purple nonsulfur bacteria Rhodobacter capsulatus B10 to synthesize bacteriochlorophyll under phototrophic and dark conditions was studied. The modes for cultivation in the dark with oxygen limitation in a continuous culture at D = 0.1 h?1 were selected. The yield of biomass reached 20 g/l; the bacteriochlorophyll a output of the process amounted to 16.6 mg/l h?1.  相似文献   
8.
An improved quantitative model describing a protective function of eukaryotic genomic noncoding sequences was developed. In this new model, two factors affecting gene protection from chemical mutagensare considered: (1) the ratio of the total lengths of coding and noncoding genomic sequences and (2) the volume of the cell nucleus. An increase in the noncoding DNA in the genome reduces the number of mutagen-damaged nucleotides in the coding region, whereas an increase in the volume of the nucleus decreases the flow of mutagens per unit of nuclear volume that attacks its surface.  相似文献   
9.
The existing reference system of thermodynamic potentials of substance formation does not outline some important properties inherent to energy transformation and utilization in the cell metabolism. To elicit these properties, a new reference system is suggested. On its basis, a generalized unit of chemical substance reductance, called redoxon, has been developed. The molecules of more reduced substances contain a higher number of redoxons. Energy value of one redoxon is nearly constant in organic compounds but strongly varying in inorganic ones. The stoichiometric and thermodynamic balances of biochemical reactions in the new reference system have been obtained. The suggested approach has been shown to be an adequate tool for the analysis of the mass-energy balance of metabolic processes including heterotrophic and autotrophic growth of intact cells and organisms.  相似文献   
10.
Interrelations between the rates of the product synthesis, cell biomass growth, respiration, and organic substrate consumption have been studied by the mass-energy balance method. This method is based on the utilization of a special unit of substance reducity, namely redoxon. Biochemical parameters have been found which are involved in these interrelations and which describe the processes of high-energy bond gain and energy expenditure during metabolism. In order to find these, the separation of the whole metabolism into several partial metabolisms has been applied. Equations have been obtained describing the dependences of the product yield and process specific productivity on the biochemical parameters and two macroscopic rates (e.g., rates of dilution and substrate consumption). Both aerobic and anaerobic product syntheses have been considered. The estimate of the upper limit of process productivity has been obtained. Mechanisms of the influence of the producer's intracellular characteristics on the rates of physiological processes and the culture productivity are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号