首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34821篇
  免费   2882篇
  国内免费   2457篇
  2024年   45篇
  2023年   329篇
  2022年   408篇
  2021年   1315篇
  2020年   1005篇
  2019年   1264篇
  2018年   1303篇
  2017年   1004篇
  2016年   1374篇
  2015年   2062篇
  2014年   2490篇
  2013年   2609篇
  2012年   3213篇
  2011年   3028篇
  2010年   1870篇
  2009年   1639篇
  2008年   2084篇
  2007年   1900篇
  2006年   1596篇
  2005年   1460篇
  2004年   1302篇
  2003年   1149篇
  2002年   994篇
  2001年   662篇
  2000年   583篇
  1999年   547篇
  1998年   326篇
  1997年   258篇
  1996年   217篇
  1995年   214篇
  1994年   187篇
  1993年   154篇
  1992年   250篇
  1991年   203篇
  1990年   159篇
  1989年   140篇
  1988年   117篇
  1987年   85篇
  1986年   82篇
  1985年   89篇
  1984年   53篇
  1983年   47篇
  1982年   37篇
  1981年   24篇
  1980年   25篇
  1979年   33篇
  1977年   27篇
  1975年   22篇
  1974年   23篇
  1970年   22篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
C A Yu  L Q Gu  Y Z Lin  L Yu 《Biochemistry》1985,24(15):3897-3902
The effect of the alkyl side chain of the ubiquinone molecule on the electron-transfer activity of ubiquinone in mitochondrial succinate-cytochrome c reductase is studied by using synthetic ubiquinone derivatives that possess the basic ubiquinone structure of 2,3-dimethoxy-5-methyl-1,4-benzoquinone with different alkyl side chains at the 6-position. The alkyl side chains vary in chain length, degree of saturation, and location of double bonds. When a ubiquinone derivative is used as an electron acceptor for succinate-ubiquinone reductase, an alkyl side chain of six carbons is needed to obtain the maximum activity. However, when it serves as an electron donor for ubiquinol-cytochrome c reductase or as a mediator in succinate-cytochrome c reductase, an alkyl side chain of 10 carbons gives maximal efficiency. Introduction of one or two isolated double bonds into the alkyl side chain of the ubiquinone molecule has little effect on electron-transfer activity. However, a conjugated double bond system in the alkyl side chain drastically reduces electron-transfer efficiency. The effect of the conjugated double bond system on the electron-transferring efficiency of ubiquinone depends on its location in the alkyl side chain. When location is far from the benzoquinone ring, the effect is minimal. These observations together with the results obtained from photoaffinity-labeling studies lead us to conclude that flexibility in the portion of the alkyl side chain immediately adjacent to the benzoquinone ring is required for the electron-transfer activity of ubiquinone.  相似文献   
2.
Cephapirin, a cephalosporin antibiotic, is used by the majority of dairy farms in the US. Fecal and urinary excretion of cephapirin could introduce this compound into the environment when manure is land applied as fertilizer, and may cause development of bacterial resistance to antibiotics critical for human health. The environmental loading of cephapirin by the livestock industry remains un-assessed, largely due to a lack of appropriate analytical methods. Therefore, this study aimed to develop and validate a cephapirin quantification method to capture the temporal pattern of cephapirin excretion in dairy cows following intramammary infusion. The method includes an extraction with phosphate buffer and methanol, solid-phase extraction (SPE) clean-up, and quantification using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The LOQ values of the developed method were 4.02 µg kg−1 and 0.96 µg L−1 for feces and urine, respectively. This robust method recovered >60% and >80% cephapirin from spiked blank fecal and urine samples, respectively, with acceptable intra- and inter-day variation (<10%). Using this method, we detected trace amounts (µg kg−1) of cephapirin in dairy cow feces, and cephapirin in urine was detected at very high concentrations (133 to 480 µg L−1). Cephapirin was primarily excreted via urine and its urinary excretion was influenced by day (P = 0.03). Peak excretion (2.69 mg) was on day 1 following intramammary infusion and decreased sharply thereafter (0.19, 0.19, 0.08, and 0.17 mg on day 2, 3, 4, and 5, respectively) reflecting a quadratic pattern of excretion (Quadratic: P = 0.03). The described method for quantification of cephapirin in bovine feces and urine is sensitive, accurate, and robust and allowed to monitor the pattern of cephapirin excretion in dairy cows. This data will help develop manure segregation and treatment methods to minimize the risk of antibiotic loading to the environment from dairy farms.  相似文献   
3.
The role of phospholipase A on the endotoxin-induced reduction in the number of beta-adrenergic receptors in dog liver plasma membranes was investigated. The results show that digestion of control liver plasma membranes with exogenous phospholipase A2 (0.2 unit/200 micrograms protein) decreased the specific binding of (-)-[3H]dihydroalprenolol by 37.3% (P less than 0.01) and reduced the number of receptor sites by 31.7% (P less than 0.05). These decreases in the specific binding and the number of beta-adrenergic receptors were completely reversible by the addition of phosphatidylcholine (0.2 mM). Endotoxin administration (2 hr postendotoxin) decreased the specific binding by 36% (P less than 0.05) and reduced the number of beta-adrenergic receptors by 33% (P less than 0.05), and these decreases were completely reversible by the addition of 0.2 mM phosphatidylcholine. Digestion of control liver membranes with exogenous phospholipase A2 decreased phosphatidylcholine and phosphatidylethanolamine levels by 50.6 and 51.2%, respectively, but increased lysophosphatidylcholine and lysophosphatidylethanolamine levels by 12- and 8.4-fold, respectively. Endotoxin administration decreased phosphatidylcholine and phosphatidylethanolamine contents by 21.4 and 23.8%, respectively, but increased lysophosphatidylcholine and lysophosphatidylethanolamine contents by 2.1- and 1.4-fold, respectively. In addition, endotoxin administration increased endogenous phospholipase A activity by 73.5%. Based on these results, it is suggested that the decreases in the specific binding and the number of beta-adrenergic receptors in dog livers during endotoxic shock are a result of phospholipase A activation.  相似文献   
4.
5.
6.
7.
Diabetic nephropathy (DN) as a global health concern is closely related to inflammation and oxidation. Isoliquiritigenin (ISL), a natural flavonoid compound, has been demonstrated to inhibit inflammation in macrophages. Herein, we investigated the effect of ISL in protecting against the injury in STZ-induced type 1 DN and in high glucose-induced NRK-52E cells. In this study, it was revealed that the administration of ISL not only ameliorated renal fibrosis and apoptosis, but also induced the deterioration of renal function in diabetic mice. Mediated by MAPKs and Nrf-2 signaling pathways, respectively, upstream inflammatory response and oxidative stress were neutralized by ISL in vitro and in vivo. Moreover, as further revealed by the results of molecular docking, sirtuin 1 (SIRT1) binds to ISL directly, and the involvement of SIRT1 in ISL-mediated renoprotective effects was confirmed by studies using in vitro models of SIRT1 overexpression and knockdown. In summary, by reducing inflammation and oxidative stress, ISL has a significant pharmacological effect on the deterioration of DN. The benefits of ISL are associated with the direct binding to SIRT1, the inhibition of MAPK activation, and the induction of Nrf-2 signaling, suggesting the potential of ISL for DN treatment.Subject terms: Pharmacology, Molecular biology  相似文献   
8.
9.
COVID-19, caused by SARS-CoV-2, is an acute and rapidly developing pandemic, which leads to a global health crisis. SARS-CoV-2 primarily attacks human alveoli and causes severe lung infection and damage. To better understand the molecular basis of this disease, we sought to characterize the responses of alveolar epithelium and its adjacent microvascular endothelium to viral infection under a co-culture system. SARS-CoV-2 infection caused massive virus replication and dramatic organelles remodeling in alveolar epithelial cells, alone. While, viral infection affected endothelial cells in an indirect manner, which was mediated by infected alveolar epithelium. Proteomics analysis and TEM examinations showed viral infection caused global proteomic modulations and marked ultrastructural changes in both epithelial cells and endothelial cells under the co-culture system. In particular, viral infection elicited global protein changes and structural reorganizations across many sub-cellular compartments in epithelial cells. Among the affected organelles, mitochondrion seems to be a primary target organelle. Besides, according to EM and proteomic results, we identified Daurisoline, a potent autophagy inhibitor, could inhibit virus replication effectively in host cells. Collectively, our study revealed an unrecognized cross-talk between epithelium and endothelium, which contributed to alveolar–capillary injury during SARS-CoV-2 infection. These new findings will expand our understanding of COVID-19 and may also be helpful for targeted drug development.Subject terms: Mechanisms of disease, Viral infection  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号