首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Treatment of rat liver cells (the C-9 cell line), porcine aorta endothelial cells, bovine aorta smooth muscle cells, bovine aorta endothelial cells, mouse fibroblasts and rat keratinocytes with highly purified, crystallized Bacillus cereus phospholipase C, which hydrolyzes phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine but has little or no effect on phosphatidylinositol, phosphatidylglycerol, cardiolipin, sphingomyelin, lysophosphatidylcholine or lysophosphatidylethanolamine, increased metabolism of arachidonic acid. Hydrolysis of phosphatidylcholine (and/or phosphatidylethanolamine) by a phosphatidylcholine (or phosphatidylethanolamine)-hydrolyzing phospholipase C appears to contribute to liberation of substrate for arachidonic acid metabolism.  相似文献   

2.
Phospholipase and lysophospholipase activities were assayed in goat epididymal spermatozoa. Lysophospholipase was 10 times more active than phospholipase, and both enzymes decreased in activity substantially in the transit of spermatozoa from the caput to the cauda epididymidis. A comparative study revealed that phosphatidyl-ethanolamine, -choline and -inositol and phosphatidic acid were hydrolysed by goat sperm phospholipase. Hydrolysis of phosphatidylethanolamine/phosphatidylcholine revealed the end products to be glycerophosphoethanolamine/choline but neither diglycerides nor lysophosphatidylethanolamine/lysophosphatidylcholine were detected.  相似文献   

3.
Evaluation of various solvent systems for lipid extraction of wheat Triticum aestivum L. cv. Rideau seeds showed that boiling 2-propanol followed by the Bligh-Dyer procedure was the most efficient method, with respect to lipid yield and ability to inactivate lipolytic enzymes. Ten phospholipids were identified in dry seeds; the major components being phosphatidylcholine, lysophosphatidylcholine, N-acyl lysophosphatidyl-ethanolamine, N-acylphosphatidylethanolamine, and phosphatidylethanolamine. After growth for 1 week (2 C) or 31 hours (24 C), the proportions of phosphatidylethanolamine + lysophosphatidic acid and phosphatidic acid increased, lysophosphatidylcholine decreased, and the remaining phospholipids showed little change. At 5 weeks (2 C) or 72 hours (24 C), the seedlings showed 5-fold increases in the proportion of phosphatidic acid largely at the expense of phosphatidylcholine, small decreases in N-acyl lysophosphatidylethanolamine and N-acylphosphatidylethanolamine, and significant increases in lysophosphatidylcholine. The changes in phosphatidic acid and phosphatidylcholine are interpreted as being partially due to increasing phospholipase D activity during germination. In general, the phospholipid composition was similar in morphologically equivalent seedlings grown at 2 C or 24 C. The increased membrane content in seedlings grown at 2 C does not reflect any preferential synthesis of individual phospholipids.  相似文献   

4.
A novel method of brush border membrane vesicle (BBMV) preparation from the small intestinal mucosa using polyethylene glycol (PEG) precipitation has been presented. This preparation is compared with calcium-precipitated BBMVs in marker enzyme enrichment, contamination by other subcellular membranes, transport of glucose, and lipid composition. PEG-precipitated BBMVs are comparable with calcium-precipitated membranes in all parameters except lipid composition and thiol content. PEG-precipitated membranes have more phosphatidylcholine and phosphatidylethanolamine and less lysophosphatidylcholine and lysophosphatidylethanolamine as compared to calcium-precipitated membranes. Diacylglycerol and triacylglycerol content are also high in PEG-precipitated membranes. Alteration in lipid composition indicate the possible activation of lipase and phospholipase by calcium during BBMV preparation, which is not seen in PEG precipitation. Thiol content is almost double in PEG-precipitated membranes as compared to calcium-precipitated membranes. These results indicate that PEG can be used for the preparation of BBMVs in native form from the intestine without any alteration in their structural components, and these membranes show comparable transport activity.  相似文献   

5.
We have investigated the albumin-stimulated release from cultured rat hepatocytes of lysophosphatidylcholine derived from methylation of phosphatidylethanolamine and of lysophosphatidylethanolamine. In the absence [corrected] of albumin, neither lysophosphatidylethanolamine nor lysophosphatidylcholine was released into the culture medium. Albumin stimulated the accumulation of both phospholipids in the medium. After 2 h, 14.1 nmol of lysophosphatidylcholine and 2.0 nmol of lysophosphatidylethanolamine per 3 x 10(6) cells had accumulated in the medium. The rate of release of [3H]ethanolamine-labelled lysophosphatidylethanolamine was rapid in the first 2 h and then was decreased, whereas there was a 1 h lag in the release of [3H]ethanolamine-labelled lysophosphatidylcholine. This apparent lag probably reflected the time necessary for the synthesis of phosphatidylcholine from phosphatidylethanolamine in the cells. Albumin caused a decrease in labelled cellular lysophosphatidylethanolamine and lysophosphatidylcholine which only partially accounted for the accumulation of the labelled phospholipids in the medium. Albumin also stimulated the release of labelled phosphatidylethanolamine (almost 3-fold) and phosphatidylcholine (2-fold) into the medium. There was no detectable change in the labelling of the cellular pools of these phospholipids, most likely owing to the large amounts in the cells compared with the medium. The labelled lysophospholipids did not arise from catabolism of the parent phospholipid in the medium. Analysis of the fatty acids of the secreted lysophospholipids showed a preferential release of unsaturated fatty acyl species of lysophosphatidylcholine, whereas lysophosphatidylethanolamine contained similar amounts of saturated and unsaturated fatty acids.  相似文献   

6.
A membrane preparation from porcine platelets catalyzed the hydrolysis of [2-3H]glycerol-labeled lysophosphatidylinositol to form monoacylglycerol and inositol phosphates. The hydrolysis was optimal at pH 9. The addition of Ca2+ did not enhance the hydrolysis, but the enzyme was inhibited completely by EGTA. The EGTA-inactivated enzyme was partially reactivated by Ca2+; Mn2+, Mg2+, and Zn2+ were much less effective or ineffective for the reactivation. The phospholipase C was apparently specific for lysophosphatidylinositol; phosphatidylinositol, phosphatidylcholine, phosphatidylethanolamine, lysophosphatidylcholine, lysophosphatidylethanolamine, phosphatidic acid, and lysophosphatidic acid were not hydrolyzed at significant rates under the conditions used. Phospholipase C with these properties has not been reported previously.  相似文献   

7.
M S Liu  S Ghosh  Y Yang 《Life sciences》1983,33(20):1995-2002
The effects of endotoxin administration on the fluidity of dog liver plasma membranes and their relationship with changes in phospholipase A2 activity were studied. Endotoxin administration decreased the fluidity of liver plasma membranes and this decrease was reversible by phosphatidylcholine. The endotoxin-induced decrease in membrane fluidity could be mimicked by digesting control liver membranes with exogenous phospholipase A2. Endotoxin administration also increased the endogenous phospholipase A2 activity. Endotoxin in vitro had no phospholipase A2-like activity but it activated the hydrolytic activity of exogenous phospholipase A2. Based on these data, it is concluded that endotoxin administration decreased the fluidity of canine liver plasma membranes by acting through activation of phospholipase A2. The decrease in membrane lipid fluidity induced by endotoxin administration may play a significant role in the development of the pathophysiology of endotoxic shock at the cellular level.  相似文献   

8.
Summary The involvement of membrane phospholipids in the utilization of transferrinbound iron by reticulocytes was investigated using [59Fe]- and [125I]-labelled transferrin and rabbit reticulocytes which had been incubated with phospholipas A. Transferrin and iron uptake and release were all inhibited by phospholipas A which produced a marked decrease in the relative abundance of phosphatidylcholine and phosphatidylethanolamine and equivalent increases in their lyso-compounds in the reticulocyte plasma membrane. There was a close correlation between the iron uptake rate and the rate and amount of transferrin uptake and the amount of the lysophospholipids in the membrane. Incubation of the cells with exogenous lysophosphatidylethanolamine or lysophosphatidylcholine also produced inhibition of iron and transferrin uptake. The reduced uptake produced by phospholipase A could be reversed if the lyso-compounds were removed by fatty acid-free bovine serum albumin or by reincubation in medium 199. Treatment with phospholipase A was shown to increase the amount of transferrin bound by specific receptors on the reticulocyte membrane but to inhibit the entry of transferrin into the cells.The present investigation provides evidence that the phospholipid composition of the cell membrane influences the interaction of transferrin with its receptors, the processes of endocytosis and exocytosis whereby transferrin enters and leaves the cells, and the mechanism by which iron is mobilized between its binding to transferrin and incorporation into heme. In addition, the results indicate that phosphatidylethanolamine is present in the outer half of the lipid bilayer of reticulocyte membrane.  相似文献   

9.
We observed that in hypoxic myocardial cells prostacyclin and arachidonic acid release increased and that during hypoxia phospholipid degradation also occurred. In order to clarify the mechanism of phospholipid degradation, we determined the activity of phospholipases A2 and C. We found that phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were markedly decreased and that lysophosphatidylcholine and lysophosphatidylethanolamine were increased. In contrast, there was only slight phosphatidylinositol degradation and no lysophosphatidylinositol elevation was observed. These results show that phospholipase A2 was activated in hypoxic myocytes and had substrate specificity towards PC and PE. To study phospholipase C activity, membrane phospholipids were labeled with [3H]choline, [3H]inositol or [3H]ethanolamine. The release of inositol was observed, but neither choline nor ethanolamine was released. In hypoxia, myocardial-cell phospholipase C has high substrate specificity towards phosphatidylinositol. The activation of phospholipases is closely related to the intracellular Ca2+ concentration; it is though that inositol polyphosphatides may regulate intracellular Ca2+. We determined how Ca2+ influx occurs in hypoxia. beta-Adrenergic blockade and Ca2+ antagonists markedly suppressed Ca2+ influx, phospholipase A2 activity, phospholipase C activity and cell death. However, the alpha 1-adrenergic blockade was less effective in suppressing these phenomena. These results suggest that in hypoxic myocardial cells Ca2+ influx mediated by beta-adrenergic stimulation activates phospholipases A2 and C, and that phospholipid degradation and prostacyclin release then occur.  相似文献   

10.
Lipids in the two surface membranes of Schistosoma mansoni may play an important role in the parasite's defense against host immunity. In particular, lysophosphatidylcholine lyses erythrocytes attached to the parasite and alters the lateral mobilities of their membrane proteins and lipids (Golan et al. 1986). Here, we have studied the incorporation of radiolabeled precursors into the major lipid classes of schistosomula as well as into lipids released by schistosomula into the medium. Radiolabeled polar head groups (choline and ethanolamine) and fatty acid precursors (palmitate and oleate) were linearly incorporated into parasite phospholipids. Fatty acids were differentially incorporated into the various phospholipid classes, principally into phosphatidylcholine and, to a lesser extent, into phosphatidylethanolamine, lysophosphatidylcholine, and phosphatidylserine. The major neutral lipid class labeled, triglycerides, had a decrease in specific activity with time after pulse labeling and the specific activity of the phospholipids increased with time. Thus, triglycerides may provide acyl chains for phospholipid synthesis. Choline was incorporated into phosphatidylcholine and lysophosphatidylcholine, and ethanolamine into phosphatidylethanolamine and lysophosphatidylethanolamine. No evidence was found for phospholipid methylation or demethylation in schistosomula. Labeled lipids were linearly and selectively released into the medium. Triglycerides were released at the highest rate with measurable quantities of phosphatidylcholine, lysophosphatidylcholine, and phosphatidylethanolamine also observed. Monopalmitoylphosphatidylcholine was the only lysophosphatidylcholine present in the medium as demonstrated by reverse-phase chromatography of released choline-labeled lysophosphatidylcholine. These studies demonstrate that schistosomula synthesize phospholipids and neutral lipids and release some of them into the culture medium. In particular, they release a single molecular species of a potent biologically active molecule, monopalmitoylphosphatidylcholine, that may play a role in the parasite's evasion of the immune response.  相似文献   

11.
Hyperplastic nodules and hepatomas were induced in livers of rats fed a diet containing 0.05% N-2-fluorenylacetamide (2-FAA). The lipid contents, and phospholipid and fatty acid compositions were analyzed in plasma membranes (PM's) isolated from these tissues and normal rat liver, and the following trends were observed. The molar ratio of cholesterol to phospholipid-phosphorus (phospholipid-P) increased in the order: hepatoma less than normal liver less than hyperplastic nodules. The molar percentage of plasmalogen to phospholipid-P decreased in the order: hepatoma = hyperplastic nodules greater than normal liver. The percentages of choline phosphoglycerides (sum of phosphatidylcholine and lysophosphatidylcholine) and ethanolamine phosphoglycerides (sum of phosphatidylethanolamine and lysophosphatidylethanolamine) both decreased in the order: hepatoma greater than hyperplastic nodules greater than normal liver. On the other hand, the percentages of sphingomyelin and phosphatidylserine both increased in the order: hepatoma less than hyperplastic nodules less than normal liver. As regards fatty acid composition, the percentages of both 18:1 and 18:2 decreased in the order: hepatoma greater than hyperplastic nodules greater than normal liver. Those of 18:0 and 20:4 increased in the order: hepatoma less than hyperplastic nodules less than normal liver. These results suggested that the lipid bilayer in PM of hyperplastic nodules has characteristics roughly intermediate between those of hepatoma and liver PM's, although the molar ratio of cholesterol to phospholipid-P in hyperplastic nodules PM was not intermediate.  相似文献   

12.
The lipid fluidity in purified plasma membranes (PM) of murine leukemic GRSL cells, as measured by fluorescence polarization, is much higher than in PM of normal thymocytes. This was found to be due to relatively low contents of cholesterol and sphingomyelin and a high amount of unsaturated fatty acyl chains, especially linoleic acid, in the phospholipids. PM from GRSL cells contain markedly more phosphatidylethanolamine than those from thymocytes. For both GRSL cells and thymocytes the detailed lipid composition of isolated PM was compared with that of the corresponding shed extracellular membranes (ECM), which were isolated from the ascites fluid and from thymus cell suspensions, respectively. The somewhat decreased lipid fluidity of thymocyte ECM as compared to their PM, can be ascribed to the increased cholesterol/phospholipid molar ratio (0.88 vs. 0.74). No other major differences were found between the lipid composition of these membranes. In contrast, significant differences were found between PM and ECM from GRSL cells. In this system a much lower lipid fluidity of the shed ECM was found, due to the much increased cholesterol/phospholipid molar ratio (3.5-fold) and sphingomyelin (9-fold) content, as compared to the PM. Further, the ECM contain relatively more lysophosphatidylethanolamine and less phosphatidylcholine and -inositol. ECM contain a higher amount of polyunsaturated fatty acids, especially in the phosphatidylethanolamine and lysophosphatidylethanolamine classes. On the other hand, the fatty acids of phosphatidylcholine and lysophosphatidylcholine are more saturated than in PM. In particular, ECM of GRSL cells contain less oleic and linoleic acid residues and more arachidonic acid and 22:polyunsaturated fatty acid residues than PM. The possible relevance of these differences with respect to the mechanism of shedding of vesicles from the cell surface, is discussed.  相似文献   

13.
Phospholipids from the mitochondrial membrane of the sweet potato,a tropical plant, were composed mainly of phosphatidylethanolamine,phosphatidylcholine, lysophosphatidylcholine and an unknownphospholipid (S4) and their approximate contents were 39, 33,7 and 21 molar percent, respectively. Phosphatidylethanolaminebegan to decrease during the 4 day-chilling storage and thedecrease continued up to 40% during the 14 day-chilling storage.Decreases in phosphatidyicholine, lysophosphatidylcholine andS4 were indicated for the 8 day-chilling storage and their componentswere lost during the 14 day-chilling storage, by 20, 10 and20%, respectively. The amounts of these phospholipids did notseem to be changed further by prolonged chilling sotrage. Phospholipids of the mitochondrial membrane from the white potato,a temperate-zone plant, were composed mainly of phosphatidylethanolamine,phosphatidylcholine, lysophosphatidylethanolamine and an unknownphospholipid (W4), whose approximate contents were 39, 43, 3and 15 molar percent, respectively. Amounts of these four phospholipidswere not altered during the 14 day-chilling storage. 1 This paper constitutes part 93 of the phytopathological chemistryof the sweet potato with black rot and injury. (Received August 21, 1971; )  相似文献   

14.
The liver cell plasma membranes of fed male Wistar rats were separated into a fraction rich in bile canaliculi and the remainder of the plasma membrane. Electron-microscopically, the bile canalicular fraction consisted almost exclusively of intact bile canaliculi with thier contiguous membranes. The remaining plasma membrane fraction consisted primarily of vesicles and sheets of membranes essentially free from the bile canaliculi. The bile canalicular membrane fraction contained relatively more total lipid, cholesterol, and phospholipid, and relatively less protein. Although the phospholipid composition of the two fractions was the same, the specific activity of the bile canalicular membrane phosholipids, up to 12 h following in vivo administration of [2-3H]glycerol, was always significantly greater than that of the remaining plasma membranes, and showed a biphasic response not found in the latter. The specific activity of the phosphatidylcholine, phosphatidylethanolamine and lysophosphatidylcholine of the bile canalicular membranes rose to a peak within 40 min after administration of the label, fell sharply and then rose to a second peak after 120 min. The specific activity of the sphingomyelin and phosphatidylserine plus phosphatidylinositol of the bile canalicular membranes and of all the phospholipids of the remaining plasma membranes diphasic pattern but increased steadily to reach a maximum at 120 min. The specific activity of biliary phosphatidylcholine followed a pattern identical to that of the phosphatidylcholine, phosphatidylethanolamine and lysophosphatidylcholine of the bile canalicular membrane fraction. These results show that the average rate of turnover of phospholipid in the bile canalicular membranes is considerably greater than that in the remaining plasma membrane and other cell membrane fractions; they indicate that the phospholipid of the bile canalicular membranes exists in two or more pools, turning over a different rates; and they support the concept that biliary phospholipid is derived from the bile canalicular membrane. The results also suggest that bile canalicular phospholipid may be derived from two different sources, in contrast to the remainong plasma membrane.  相似文献   

15.
A membrane preparation from rat brain catalyzed the hydrolysis of [2-3H]glycerol-labeled lysophosphatidylinositol (lysoPI) to yield monoacylglycerol (MG) and inositolphosphates. This phospholipase C activity had an optimal pH of 8.2. The membrane preparation did not require the addition of Ca2+ for its maximum activity, but the activity was inhibited by addition of 0.1 mM EDTA to the assay mixture and was restored by simultaneous addition of 0.2 mM Ca2+. The activity was found to be localized in synaptic plasma membranes prepared by Ficoll and Percoll density gradients. The phospholipase C was highly specific for lysoPI; diacylglycerol formation from phosphatidylinositol, and MG formation from lysophosphatidylcholine, lysophosphatidylethanolamine, and lysophosphatidylserine were below 5% of that observed with lysoPI under the conditions used. We concluded that there is a pathway for phosphatidylinositol metabolism in brain synaptic membranes which is different from the well-characterized phosphoinositide-specific phospholipase C pathway.Abbreviations PI phosphatidylinositol - lysoPI lysophosphatidylinositol - lysoPI-PLC lysophosphoinositide-specific phospholipase C - PI-PLC phosphoinositide-specific phospholipase C - MG monoacylglycerol - PLC phospholipase C To whom to address reprint requests.  相似文献   

16.
After force-feeding a protein-free diet to male rats for 5-7 days a substantial (2.4-fold) increase in the specific activity of the liver microsomal enzyme UDP-glucuronyltransferase (EC 2.4.1.17) was observed. A similar activation of the enzyme occurred when rats were fed on a low-protein (5%, w/w, casein) diet for 60 days. Although both the short- and long-term protein-deficient diets decreased the contents of microsomal protein and phospholipid in liver tissue they did not significantly alter the ratio of these major membrane components. Protein deficiency profoundly altered the phospholipid composition of microsomal membranes. The most striking difference in microsomal phospholipid composition between control and protein-deficient rats was their content of lysophosphatides. Whereas microsomal membranes from protein-deficient rats contained significant proportions of lysophosphatidylcholine and lysophosphatidylethanolamine very little or no lysophosphatides were detected in control preparations. Pretreatment of microsomal fractions from normal rats with phospholipase A markedly increased their UDP-glucuronyltransferase activity as did their pretreatment with lysophosphatidylcholine. It is concluded that the quantities of lysophosphatides present in microsomal membranes from protein-deficient rats were sufficient to have caused the increased UDP-glucuronyltransferase activities of these preparations. Evidence is presented suggesting that these changes in microsomal phospholipid composition and UDP-glucuronyltransferase activity caused by protein deficiency reflect changes that occur in vivo. The possible physiological significance of these findings is discussed.  相似文献   

17.
The phospholipids of intact microsomal membranes were hydrolysed 50% by phospholipase C of Clostridium welchii, without loss of the secretory protein contents of the vesicle, which are therefore not permeable to the phospholipase. Phospholipids extracted from microsomes and dispersed by sonication were hydrolysed rapidly by phospholipase C-Cl. welchii with the exception of phosphatidylinositol. Assuming that only the phospholipids of the outside of the bilayer of the microsomal membrane are hydrolysed in intact vesicles, the composition of this leaflet was calculated as 84% phosphatidylcholine, 8% phosphatidylethanolamine, 9% sphingomyelin and 4% phosphatidylserine, and that of the inner leaflet 28% phosphatidylcholine, 37% phosphatidylethanolamine, 6% phosphatidylserine and 5% sphingomyelin. Microsomal vesicles were opened and their contents released in part by incubation with deoxycholate (0.098%) lysophosphatidylcholine (0.005%) or treatment with the French pressure cell. Under these conditions, hydrolysis of the phospholipids by phospholipase C-Cl. welchii was increased and this was mainly due to increased hydrolysis of those phospholipids assigned to the inner leaflet of the bilayer, phosphatidylethanolamine and phosphatidylserine. Phospholipase A2 of bee venom and phospholipase C of Bacillus cereus caused rapid loss of vesicle contents and complete hydrolysis of the membrane phospholipids, with the exception of sphingomyelin which is not hydrolysed by the former enzyme.  相似文献   

18.
A rapid high-performance liquid chromatographic method for the separation of methylated phospholipids is described. The separation is accomplished on an amine column using acetonitrile—methanol—water as the eluting solvent and UV detection at 203 nm. The choice between gradient and isocratic elution for the separation depends upon the condition of column. The method is suitable for the isolation of phosphatidylcholine, sphingomyelin, lysophosphatidylcholine, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidyldimethylethanolamine and lysophosphatidylethanolamine from tissues. It is applicable to the study of reaction products in phosphatide methyltransferase assay mixtures. Choline and ethanolamine plasmalogens can be determined indirectly by converting them into lysophosphatidylcholine and lysophosphatidylethanolamine with exposure to hydrochloric acid fumes.  相似文献   

19.
Addition of the active auxins indole-3-acetic acid, 2,4-dichlorophenoxyacetic acid or alpha-naphthylacetic acid to cultured soybean (Glycine max L.) cells prelabeled with ethanolamine or choline increased the radioactivity in the lysophosphatidylethanolamine (LPE) or lysophosphatidylcholine (LPC) pool within 5 min. The inactive auxin analogue, beta-naphthylacetic acid, was inactive in this response. In membranes prelabeled in vivo, either with ethanolamine or choline, and subsequently isolated from zucchini (Cucurbita pepo L.) hypocotyls, indole-3-acetic acid and 2,4-dichlorophenoxyacetic acid stimulated the conversion of phosphatidylethanolamine (PE) to LPE and of phosphatidylcholine (PC) to LPC in vitro whereas the inactive auxin analogue 2,3-dichlorophenoxyacetic acid did not.  相似文献   

20.
Acyl-CoA: lysophosphatidylcholine, acyl-CoA: lysophosphatidylethanolamine, and lysophosphatidylcholine:lysophosphatidylcholine acyltransferases were investigated using subcellular fractions derived from adult rat type II pneumocytes in primary culture. Acyl-CoA:lysophospholipid acyltransferase activities were determined to be microsomal, while lysophosphatidylcholine:lysophosphatidylcholine acyltransferase activity was found to be cytosolic. Total palmitoyl CoA:lysophosphatidylcholine acyltransferase activity was 30-fold greater than lysophosphatidylcholine:lysophosphatidylcholine acyltransferase activity, indicating that the former enzyme is more important in the synthesis of dipalmitoyl phosphatidylcholine. Palmitoyl-CoA and oleoyl-CoA lysophosphatidylcholine acyltransferase activities were approximately equal under optimal substrate conditions. Specific activities of the enzyme using arachidoyl-CoA and arachidonoyl-CoA were 46% and 18%, respectively, of those with palmitoyl-CoA. Acyl-CoA:lysophosphatidylethanolamine acyltransferase showed a preference for palmitoyl-CoA as opposed to oleoyl-CoA under optimal conditions. However, when equimolar concentrations of either palmitoyl-CoA and oleoyl-CoA or palmitoyl-CoA and arachidoyl-CoA were assayed together, the relative utilization of the two substrates was found to be dependent on total acyl-CoA concentration. At higher concentrations, the incorporation of palmitoyl-CoA into phosphatidylcholine was less than other acyl-CoAs. However, at lower concentrations palmitoyl-CoA was utilized quite selectively. Whole lung microsomes did not show as marked a preference for palmitoyl-CoA as did type II pneumocyte microsomes under these same conditions. In similar experiments, low total acyl-CoA concentrations produced greater incorporation of oleoyl-CoA into phosphatidylethanolamine. For both enzymes total activity at the lowest concentrations used was at least 45% that at optimal conditions. This demonstrates that the type II pneumocyte acyltransferase system(s) can selectively utilize palmitoyl-CoA. No evidence for direct exchange of palmitoyl-CoA with 1-saturated-2-unsaturated phosphatidylcholine in subcellular fractions from type II pneumocytes was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号