首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20698篇
  免费   1800篇
  国内免费   2015篇
  2024年   27篇
  2023年   245篇
  2022年   362篇
  2021年   964篇
  2020年   684篇
  2019年   897篇
  2018年   899篇
  2017年   663篇
  2016年   899篇
  2015年   1358篇
  2014年   1604篇
  2013年   1682篇
  2012年   2047篇
  2011年   1832篇
  2010年   1162篇
  2009年   1024篇
  2008年   1233篇
  2007年   1139篇
  2006年   961篇
  2005年   864篇
  2004年   683篇
  2003年   605篇
  2002年   589篇
  2001年   337篇
  2000年   279篇
  1999年   302篇
  1998年   179篇
  1997年   158篇
  1996年   113篇
  1995年   81篇
  1994年   90篇
  1993年   63篇
  1992年   84篇
  1991年   66篇
  1990年   61篇
  1989年   44篇
  1988年   35篇
  1987年   25篇
  1986年   32篇
  1985年   24篇
  1984年   16篇
  1983年   14篇
  1982年   11篇
  1981年   14篇
  1980年   6篇
  1979年   5篇
  1976年   6篇
  1975年   5篇
  1974年   5篇
  1966年   4篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Diabetic nephropathy (DN) as a global health concern is closely related to inflammation and oxidation. Isoliquiritigenin (ISL), a natural flavonoid compound, has been demonstrated to inhibit inflammation in macrophages. Herein, we investigated the effect of ISL in protecting against the injury in STZ-induced type 1 DN and in high glucose-induced NRK-52E cells. In this study, it was revealed that the administration of ISL not only ameliorated renal fibrosis and apoptosis, but also induced the deterioration of renal function in diabetic mice. Mediated by MAPKs and Nrf-2 signaling pathways, respectively, upstream inflammatory response and oxidative stress were neutralized by ISL in vitro and in vivo. Moreover, as further revealed by the results of molecular docking, sirtuin 1 (SIRT1) binds to ISL directly, and the involvement of SIRT1 in ISL-mediated renoprotective effects was confirmed by studies using in vitro models of SIRT1 overexpression and knockdown. In summary, by reducing inflammation and oxidative stress, ISL has a significant pharmacological effect on the deterioration of DN. The benefits of ISL are associated with the direct binding to SIRT1, the inhibition of MAPK activation, and the induction of Nrf-2 signaling, suggesting the potential of ISL for DN treatment.Subject terms: Pharmacology, Molecular biology  相似文献   
2.
3.
COVID-19, caused by SARS-CoV-2, is an acute and rapidly developing pandemic, which leads to a global health crisis. SARS-CoV-2 primarily attacks human alveoli and causes severe lung infection and damage. To better understand the molecular basis of this disease, we sought to characterize the responses of alveolar epithelium and its adjacent microvascular endothelium to viral infection under a co-culture system. SARS-CoV-2 infection caused massive virus replication and dramatic organelles remodeling in alveolar epithelial cells, alone. While, viral infection affected endothelial cells in an indirect manner, which was mediated by infected alveolar epithelium. Proteomics analysis and TEM examinations showed viral infection caused global proteomic modulations and marked ultrastructural changes in both epithelial cells and endothelial cells under the co-culture system. In particular, viral infection elicited global protein changes and structural reorganizations across many sub-cellular compartments in epithelial cells. Among the affected organelles, mitochondrion seems to be a primary target organelle. Besides, according to EM and proteomic results, we identified Daurisoline, a potent autophagy inhibitor, could inhibit virus replication effectively in host cells. Collectively, our study revealed an unrecognized cross-talk between epithelium and endothelium, which contributed to alveolar–capillary injury during SARS-CoV-2 infection. These new findings will expand our understanding of COVID-19 and may also be helpful for targeted drug development.Subject terms: Mechanisms of disease, Viral infection  相似文献   
4.
5.
Summary The pars distalis of the anterior pituitary is known to be regulated by hypothalamic hormones. Recently, we have discovered the presence of substance P-like immunoreactive nerve fibers in the pars distalis of the monkeys. Substance P-like immunoreactivity in the pars distalis of the dog was investigated in this study. A substantial amount of substance P-like immunoreactive nerve fibers with a large amount of varicosities were found. They were widely distributed in the gland, more abundant along its periphery. Most of them were closely related to the glandular tissue, some were located on vascular walls. Substance P-like immunoreactive nerve fibers were also found in the meningeal sheath of the anterior pituitary. They could be followed into the parenchyma of the gland.  相似文献   
6.
Wavefront shaping can compensate the wavefront distortions in deep tissue focusing, leading to an improved penetration depth. However, when using the backscattered signals as the feedback, unexpected compensation bias may be introduced, resulting in focusing position deviations or even no focus in the illumination focal plane. Here we investigated the reliability of wavefront shaping based on coherent optical adaptive technique in deep tissue focusing by measuring the position deviations between the foci in the illumination focal plane and the epi‐detection plane. The experimental results show that when the penetration depth reaches 150 μm in mouse brain tissue (with scattering coefficient ~22.42 mm?1) using a 488 nm laser and an objective lens with 0.75 numerical aperture, the center of the real focus will deviate out of one radius range of the Airy disk while the optimized focus in the epi‐detection plane maintained basically at the center. With the penetration depth increases, the peak to background ratio of the focus in the illumination focal plane decreases faster than that in the epi‐detection plane. The results indicate that when the penetration depth reaches 150 μm, feedback based on backscattered signals will make wavefront shaping lose its reliability, which may provide a guidance for applications of non‐invasive precise optogenetics or deep tissue optical stimulation using wavefront shaping methods. A, Intensity distribution in the epi‐detection plane and the illumination focal plane before and after correction, corresponding to brain sections with 250 and 300 μm thickness, respectively. Scale bar is 2 μm. B, Averaged focusing deviations in the epi‐detection plane (optimized) and the illumination focal plane (monitored) after compensation. The unit of the ordinate is one Airy disk diameter. Black dashed line represents one Airy disk radius. Bars represent the SE of each measurement set.   相似文献   
7.
8.
9.
A 14 kDa polypeptide in rat ileal cytosol has been identified as the major intestinal cytosolic bile acid-binding protein (I-BABP) by photoaffinity labeling with the radiolabeled 7,7-azo derivative of taurocholate (7,7-azo-TC). To further characterize I-BABP, the protein was purified by lysylglycocholate Sepharose 4B affinity and DE-52 anion-exchange chromatography. The purified I-BABP contained a single 14 kDa band on SDS-PAGE. The 14 kDa protein showed a 26-fold increase in binding affinity for [3H]7,7-azo-TC compared to cytosolic protein. Immunoblotting of protein fractions separated by affinity chromatography showed that neither liver fatty acid binding protein (L-FABP) nor intestinal fatty acid binding protein (I-FABP) bind to the affinity column and that the 14 kDa protein which bound to the column and was subsequently eluted with detergent did not cross-react with anti-L-FABP or anti-I-FABP. The 14 kDa protein labeled with [3H]7,7-azo-TC was radioimmunoprecipitated from cytosol by rabbit antiserum raised against purified I-BABP. I-BABP was shown to have a blocked N-terminus; however, its mixed internal sequence generated from cyanogen bromide-cleaved protein and amino acid composition indicated that it was related to (although clearly distinct from) both I-FABP and L-FABP. These studies have isolated a 14 kDa bile acid-binding protein from rat ileal cytosol which is immunologically and biochemically distinct from I-FABP and L-FABP.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号