首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   5篇
  2022年   1篇
  2021年   1篇
  2020年   4篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   5篇
  2012年   8篇
  2011年   8篇
  2010年   4篇
  2009年   6篇
  2008年   3篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
  2004年   8篇
  2003年   4篇
  2002年   4篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1981年   2篇
  1980年   2篇
排序方式: 共有92条查询结果,搜索用时 109 毫秒
1.
When p-fluorophenylalanine (FPA) was added to influenza virus RI/5+-infected cells 4 hr after infection, virus-specific proteins were synthesized but infectious progeny virus was not produced. In these cells, synthesis of viral RNA was strongly inhibited and nucleoprotein (NP) antigen was found predominantly in the nucleus in contrast to untreated cells in which NP antigen was distributed throughout the whole cell. The intracellular location and migration of NP were examined by isotope labeling followed by fractionation of infected cells. In untreated cells, a large portion of the NP was present in the cytoplasm and most of it was detected in the form of ribonucleoprotein (RNP). In contrast, in FPA-treated cells little viral RNP was detectable and NP was present predominantly in the nucleus in a nonassembled, soluble form. When FPA was removed from the culture, synthesis of viral RNA was soon restored and a large amount of viral RNP appeared in the cytoplasm; this was followed by the production of infectious virus. The results of the experiments suggest that the NP synthesized in the presence of FPA is not assembled into viral RNP because of the lack of available RNA, and such NP migrates readily into the nucleus and accumulates there.  相似文献   
2.
3.
The ongoing coronavirus disease 2019 (COVID-19) crisis is having a large impact on acute and chronic cardiac care. Due to public health measures and t  相似文献   
4.
The majority of cardiac rehabilitation (CR) referrals consist of patients who have survived an acute coronary syndrome (ACS). Although major changes have been implemented in ACS treatment since the 1980s, which highly influenced mortality and morbidity, CR programs have barely changed and only few data are available on the optimal CR format in these patients. We postulated that standard CR programs followed by relatively brief maintenance programs and booster sessions, including behavioural techniques and focusing on incorporating lifestyle changes into daily life, can improve long-term adherence to lifestyle modifications. These strategies might result in improved (cardiac) mortality and morbidity in a cost-effective fashion. In the OPTImal CArdiac REhabilitation (OPTICARE) trial we will assess the effects of two advanced and extended CR programs that are designed to stimulate permanent adaption of a heart-healthy lifestyle, compared with current standard CR, in ACS patients. We will study the effects in terms of cardiac risk profile, levels of daily physical activity, quality of life and health care consumption.  相似文献   
5.
In this study, we investigated the diversity and spatial distribution of anaerobic methanotrophic archaea (ANMEs) in sediments of a gas hydrate field off Joetsu in the Japan Sea. Distribution of ANMEs in sediments was identified by targeting the gene for methyl coenzyme M reductase alpha subunit (mcrA), a phylogenetically conserved gene that occurs uniquely in methanotrophic and methanogenic archaea, in addition to 16S rRNA genes. Quantitative PCR analyses of mcrA genes in 14 piston core samples suggested that members of ANME-1 group would dominate AOM communities in sulfate-depleted sediments, even below the sulfate-methane interface, while ANME-2 archaea would prefer to populate in shallower sediments containing comparatively higher sulfate concentrations. These results suggest that, although the potential electron acceptors in sulfate-depleted habitats remain elusive, the niche separation of ANME-1 and -2 may be controlled by in situ concentration of sulfate and the availability in sediments.  相似文献   
6.
A series of 10 strains of Candida albicans, from TIMM 3309 to TIMM 3318, were repeatedly isolated in one myelofibrosis-complicated patient with recurrent candidemia. The latter five isolates, from TIMM 3314 to TIMM 3318, became suddenly resistant to fluconazole during the 10 to 16 weeks after antimycotic therapy. We investigated the resistant mechanism of fluconazole using one susceptible isolate and two of the five resistant isolates in the series. The ergosterol synthesis by cell-free extracts from the two resistant isolates was less susceptible to fluconazole partly as a result of a decreased affinity of cytochrome P-450. Unexpectedly, these two resistant isolates showed higher levels of an intracellular accumulation of [H]fluconazole than the susceptible isolate and the control strain of C. albicans ATCC 10231. In the resistant isolate, TIMM 3318, most intracellular incorporated fluconazole was distributed in the 12,000 X g pellet (P-120) fraction by centrifugation unlike the two susceptible strains. An observation of the ultrastructure of TIMM 3318 showed the most notable alteration to be the characteristic appearance of numerous vesicular vacuoles (diameter, 150 to 400 nm); these vacuoles were not observed, however, in either of the susceptible strains. A direct observation of the subcellular fraction prepared from TIMM 3318 by the electron microscopy negative-staining method suggests that most of the vesicular vacuoles were recovered in the P-120 fraction. These results suggest that fluconazole sequestration caused by vesicular vacuoles of the resistant isolate might act as a novel mechanism of fluconazole resistance besides the decreased affinity of cytochrome P-450.  相似文献   
7.
In order to develop an effective therapeutic intervention for patients with pancreatic cancer, we examined the genetic alternations of pancreatic cancer. Based on these results, we are developing a new gene therapy targeting the genetic character of pancreatic cancer using mutant adenoviruses selectively replication-competent in tumor cells. Loss of heterozygosity (LOH) of 30% or more were observed on chromosome arms 17p (47%), 9p (45%), 18q (43%), 12q (34%), and 6q (30%). LOH of 12q, 17p, and 18q showed the significant association with poor prognosis. These data strongly suggest that mutation of the putative suppressor genes, TP53 and SMAD4 play significant roles in the disease progression. Based on this rationale, we are developing a new gene therapy targeting tumors without normal TP53 function. E1B-55kDa-deleted adenovirus (AxE1AdB) can selectively replicate in TP53-deficient human tumor cells but not cells with functional TP53. We evaluated the therapeutic effect of this AxE1AdB on pancreatic cancer without normal TP53 function. The growth of human pancreatic tumor in SCID mice model was markedly inhibited by the consecutive injection of AxE1AdB. Furthermore, AxE1AdB is not only the strong weapon but also useful carrier of genes possessing anti-tumor activities as a virus vector specific to tumors without normal TP53 function. It was reported that uracil phosphoribosyl transferase (UPRT) overcomes 5FU resistance. UPRT catalyzes the synthesis of 5-fluorouridine monophosphate (FUMP) from Uracil and phosphoribosylpyrophosphate (PRPP). The antitumor effect of 5FU is enhanced by augmenting 5-fluorodeoxyuridine monophosphate (FdUMP) converted from FUMP, which inhibits Thymidylate Synthetase (TS). The therapeutic advantage of restricted replication competent adenovirus that expresses UPRT (AxE1AdB-UPRT) was evaluatedin an intra-peritoneal disseminated tumor model. To study the anti-tumor effect of AxE1AdB-UPRT/5FU, mice with disseminated AsPC-1 tumors were administered the adenovirus, followed by the 5FU treatment. It was shown that the treatment with AxE1AdB-UPRT/5FU caused a dramatic reduction of the disseminated tumor burden without toxicity in normal tissues. These results revealed thatthe AxE1AdB-UPRT/5FU system is a promising tool for intraperitoneal disseminated pancreatic cancer.  相似文献   
8.
Gap junctional communication, which is mediated by the connexin protein family, is essential for the maintenance of normal tissue function and homeostasis. Loss of intercellular communication results in a failure to coordinately regulate cellular functions, and it can facilitate tumorigenesis. Expression of oncogenes and stimulation with cytokines has been shown to suppress intercellular communication; however, the exact mechanism by which intercellular communication is disrupted by these factors remains uncertain. In this report, we show that Akt is essential for the disruption of gap junctional communication in v-Src-transformed cells. In addition, inhibition of Akt restores gap junctional communication after it is suppressed by TNF-α signaling. Furthermore, we demonstrate that the expression of a constitutively active form of Akt1, but not of Akt2 or Akt3, is sufficient to suppress gap junctional communication. Our results clearly define Akt1 as one of the critical regulators of gap junctional communication.  相似文献   
9.
Echinoderm microtubule-associated protein (EMAP)-like (EML) family proteins are microtubule-associated proteins that have a conserved hydrophobic EMAP-like protein (HELP) domain and multiple WD40 domains. In this study, we examined the role of EML4, which is a member of the EML family, in cell division. Time-lapse microscopy analysis demonstrated that EML4 depletion induced chromosome misalignment during metaphase and delayed anaphase initiation. Further analysis by immunofluorescence showed that EML4 was required for the organization of the mitotic spindle and for the proper attachment of kinetochores to microtubules. We searched for EML4-associating proteins by mass spectrometry analysis and found that the nuclear distribution gene C (NUDC) protein, which is a critical factor for the progression of mitosis, was associated with EML4. This interaction was mediated by the WD40 repeat of EML4 and by the C-terminus of NUDC. In the absence of EML4, NUDC was no longer able to localize to the mitotic spindle, whereas NUDC was dispensable for EML4 localization. Our results show that EML4 is critical for the loading of NUDC onto the mitotic spindle for mitotic progression.  相似文献   
10.
The Rinshoken cataract (rct) mutation, which causes congenital cataracts, is a recessive mutation found in SJL/J mice. All mutants present with opacity in the lens by 2?months of age. The rct locus was mapped to a 1.6-Mb region in Chr 4 that contains the Foxe3 gene. This gene is responsible for cataracts in humans and mice, and it plays a crucial role in the development of the lens. Furthermore, mutation of Foxe3 causes various ocular defects. We sequenced the genomic region of Foxe3, including the coding exons and UTRs; however, no mutations were discovered in these regions. Because there were no differences in Foxe3 sequences between the rct/rct and wild-type mice, we inferred that a mutation was located in the regulatory regions of the Foxe3 gene. To test this possibility, we sequenced a 5' noncoding region that is highly conserved among vertebrates and is predicted to be the major enhancer of Foxe3. This analysis revealed a deletion of 22-bp located approximately 3.2-kb upstream of the start codon of Foxe3 in rct mice. Moreover, we demonstrated by RT-PCR and in situ hybridization that the rct mutant has reduced expression of Foxe3 in the lens during development. We therefore suggest that cataracts in rct mice are caused by reduced Foxe3 expression in the lens and that this decreased expression is a result of a deletion in a cis-acting regulatory element.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号