首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   1篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2010年   4篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2003年   4篇
  2002年   3篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   3篇
  1996年   4篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1988年   1篇
排序方式: 共有52条查询结果,搜索用时 107 毫秒
1.
Summary Genes for the major storage protein of potato, patatin, have been mapped genetically and physically in both the potato and tomato genomes. In potato, all patatin genes detected by the cDNA clone pGM01 map to a single locus at the end of the long arm of chromosome 8. By means of pulsed field gel electrophoresis (PFGE) it was possible further to delimit this locus, containing 10–15 copies of the gene, to a maximum size of 1.4 million base pairs. Hybridizations with class-specific clones suggest that the locus is at least partially divided into domains containing the two major types of patatin genes, class I and II. In tomato, patatin-homologous sequences were found to reside at the orthologous locus at the end of chromosome 8. The approximately three copies in tomato were localized by PFGE to a single fragment of 300 kilobases. Whereas the class II-specific 5 promoter sequences reside in tomato at the same locus as the coding sequences, the single class I-specific copy of the 5 promoter sequences was localized on chromosome 3 with no coding sequence attached to it. A clone from this chromosome 3 locus of tomato was isolated and by restriction fragment length polymorphism mapping it could be further shown that a similar class I-specific sequence also exists on chromosome 3 of potato. As in tomato, this copy on chromosome 3 is not linked to a coding sequence for patatin. The results are discussed with respect to genome evolution and PFGE analysis of complex gene families.  相似文献   
2.
RFLP maps of potato and their alignment with the homoeologous tomato genome   总被引:10,自引:0,他引:10  
Summary An RFLP linkage map of the potato is presented which comprises 304 loci derived from 230 DNA probes and one morphological marker (tuber skin color). The self-incompatibility locus of potato was mapped to chromosome I, which is homoeologous to tomato chromosome I. By mapping chromosome-specific tomato RFLP markers in potato and, vice versa, potato markers in tomato, the different potato and tomato RFLP maps were aligned to each other and the similarity of the potato and tomato genome was confirmed. The numbers given to the 12 potato chromosomes are now in accordance with the established tomato nomenclature. Comparisons between potato RFLP maps derived from different genetic backgrounds revealed conservation of marker order but differences in chromosome and total map length. In particular, significant reduction of map length was observed in interspecific compared to intraspecific crosses. The distribution of regions with distorted segregation ratios in the genome was analyzed for four potato parents. The most prominent distortion of recombination was found to be caused by the self-incompatibility locus.  相似文献   
3.
The informativeness and inheritance of randomly amplified polymorphic DNA (RAPD) markers were investigated in an intraspecific F1 progeny derived from two heterozygous parents. The analysis confirmed the utility of RAPD markers for comparing candidate parents for the development of a molecular genetic map, and provided numerous markers for linkage analysis in a crop with a very limited history of classical or molecular genetic studies. Six potential parental lines (themselves F1 hybrid clones) showed between 1.82 and 0.62 segregating bands per primer in three hybrid families. Forty-three percent (309) of 722 primers produced polymorphic products in the most informative of these three crosses, revealing 328 single-dose (SD) markers segregating 1:1 for presence/absence in a progeny of 90 individuals. A second class of informative markers were those present in both parents but segregating in the progeny. Fifty-seven or 67% of the monomorphic but segregating markers exhibited the 3:1 ratio expected for SD dominant markers in a cross between heterozygotes. Linkage groups were constructed from the segregation of SD RAPD markers originating in the female (TMS 30572) and the male (CM2177-2) parent. Key words : RAPDs, molecular markers, genetic segregation, Manihot, single-dose markers.  相似文献   
4.
QTL analysis of trichome-mediated insect resistance in potato   总被引:10,自引:0,他引:10  
Genetic mapping of several components of a complex type of insect resistance has been undertaken as a means toward more efficient use of the valuable characteristics of a wild relative of potato. RFLP maps constructed on interspecific diploid progenies of Solanum tuberosum × S. berthaultii were used in conjunction with morphological, biochemical and biological phenotyping to identify quantitative trait loci (QTLs) contributing to trichome-mediated insect resistance. By superimposing QTL data for a wide range of phenotypes including biochemical assays, correlative and direct screens for insect resistance, and adaptation to the target environment on the genetic maps, we have addressed the organization, action and interaction of genes controlling the resistance mechanism. The outcome contributes to an understanding of the association between component traits and between desirable and undesirable features of the donor species generated in an applied breeding program. Research is proceeding toward the development of selectable markers for the introgression and transfer of this resistance among potato gene pools.  相似文献   
5.
It has been theorized that in cross-pollinated polyploid species hybrid vigor is maximized by the frequent occurrence of more than two alleles per chromosomal locus. In polyploid crops this condition of maximum heterozygosity has been reported to be associated with increased yield and optimum field performance. We report herein the first direct test of the maximum heterozygosity hypothesis. Molecular markers were used to examine the association between maximum heterozygosity and several components of yield in three different populations of tetraploid potatoes. The results indicate that the value of maximum heterozygosity is not universal but dependent on the genetic background of the material under evaluation. In a cross between adapted breeding lines, homozygosity was negatively correlated with tuber yield, and maximum heterozygosity was positively correlated with the proportion of tuber yield in the large-size fraction. In contrast, in crosses between adapted and unadapted parents, maximum heterozygosity had no detectable effect on any character. Quantitative trait locus (QTL) analysis of the three populations reveals that, regardless of the genetic background, additive genetic effects are more strongly correlated with the components of yield than are any measures of heterozygosity and that some common QTLs may be influencing yield in all three populations.  相似文献   
6.
High Density Molecular Linkage Maps of the Tomato and Potato Genomes   总被引:57,自引:0,他引:57  
High density molecular linkage maps, comprised of more than 1000 markers with an average spacing between markers of approximately 1.2 cM (ca. 900 kb), have been constructed for the tomato and potato genomes. As the two maps are based on a common set of probes, it was possible to determine, with a high degree of precision, the breakpoints corresponding to 5 chromosomal inversions that differentiate the tomato and potato genomes. All of the inversions appear to have resulted from single breakpoints at or near the centromeres of the affected chromosomes, the result being the inversion of entire chromosome arms. While the crossing over rate among chromosomes appears to be uniformly distributed with respect to chromosome size, there is tremendous heterogeneity of crossing over within chromosomes. Regions of the map corresponding to centromeres and centromeric heterochromatin, and in some instances telomeres, experience up to 10-fold less recombination than other areas of the genome. Overall, 28% of the mapped loci reside in areas of putatively suppressed recombination. This includes loci corresponding to both random, single copy genomic clones and transcribed genes (detected with cDNA probes). The extreme heterogeneity of crossing over within chromosomes has both practical and evolutionary implications. Currently tomato and potato are among the most thoroughly mapped eukaryotic species and the availability of high density molecular linkage maps should facilitate chromosome walking, quantitative trait mapping, marker-assisted breeding and evolutionary studies in these two important and well studied crop species.  相似文献   
7.
8.
Caspase proteolysis of the cohesin component RAD21 promotes apoptosis   总被引:8,自引:0,他引:8  
Caspases are a conserved family of proteases that play a critical role in the execution of apoptosis by cleaving key cellular proteins at Asp residues and modifying their function. Using an expression cloning strategy we recently developed, we isolated human RAD21/SCC1/MCD1 as a novel caspase substrate. RAD21 is a component of the cohesin complex that holds sister chromatids together during mitosis and repairs double-strand DNA breaks. Interestingly, RAD21 is cleaved by a caspase-like Esp1/separase at the onset of anaphase to trigger sister chromatid separation. Here, we demonstrate that human RAD21 is preferentially cleaved at Asp(279) by caspases-3 and -7 in vitro to generate two major proteolytic products of approximately 65 and 48 kDa. Moreover, we show that RAD21 is specifically proteolyzed by caspases into a similarly sized 65-kDa carboxyl-terminal product in cells undergoing apoptosis in response to diverse stimuli. We also demonstrate that caspase proteolysis of RAD21 precedes apoptotic chromatin condensation and has important functional consequences, viz. the partial removal of RAD21 from chromatin and the production of a proapoptotic carboxyl-terminal cleavage product that amplifies the cell death signal. Taken together, these findings point to an entirely novel function of RAD21 in the execution of apoptosis.  相似文献   
9.
 Glycoalkaloids are quantitatively inherited in Solanum, and in high concentrations they can be toxic to humans. The increased use of wild potato germplasm to improve the pest resistance, yield, and quality characteristics of cultivated potato may elevate or introduce new, more toxic glycoalkaloids into the cultivated gene pool. Therefore, it is important to increase our understanding of their inheritance, accumulation, and biosynthesis. Glycoalkaloids have two basic constituents – a glycosidic grouping and a steroid alkaloid skeleton. Steroid alkaloids are classified as solanidanes and spirosolanes, of which solanidine and solasodine are, respectively, representatives. RFLP-mapped, diploid, reciprocal backcross potato progenies involving the parents S. tuberosum and S. berthaultii, which produce solanidine and solasodine, respectively, were analyzed for segregation of the glycoalkaloids solanine, chaconine, solasodine and solamargine to identify quantitative trait loci (QTLs) for the production of the aglycones solanidine and solasodine. The F1 clone M200-30 exhibited low to nondetectable levels of solasodine and solanidine, suggesting that expression was controlled by recessive genes. In a backcross to berthaultii (BCB) and backcross to tuberosum (BCT), several QTLs for the accumulation of solasodine and solanidine were identified. Three QTLs explaining approximately 20% of the variation in solasodine were identified in BCB on chromosomes 4, 6, and 12. Similarly, three QTLs were identified in BCT on chromosomes 4, 8 and 11, but these accounted for only 10% of the variation observed in solasodine accumulation. Two QTLs for solanidine were identified in BCT on chromosomes 1 and 4. The QTL located on chromosome 1 was highly significant, accounting for 17% and 22% of the variation in solanidine accumulation in 1994 and 1995, respectively. This same QTL was also detected in BCB. The QTLs detected in this study probably represent structural and/or regulatory genes controlling the accumulation of solasodine and solanidine. Results are discussed in the context of steroid alkaloid accumulation and biosynthesis. Received: 27 August 1997 / Accepted: 16 March 1998  相似文献   
10.
RNA-Seq techniques generate hundreds of millions of short RNA reads using next-generation sequencing (NGS). These RNA reads can be mapped to reference genomes to investigate changes of gene expression but improved procedures for mining large RNA-Seq datasets to extract valuable biological knowledge are needed. RNAMiner—a multi-level bioinformatics protocol and pipeline—has been developed for such datasets. It includes five steps: Mapping RNA-Seq reads to a reference genome, calculating gene expression values, identifying differentially expressed genes, predicting gene functions, and constructing gene regulatory networks. To demonstrate its utility, we applied RNAMiner to datasets generated from Human, Mouse, Arabidopsis thaliana, and Drosophila melanogaster cells, and successfully identified differentially expressed genes, clustered them into cohesive functional groups, and constructed novel gene regulatory networks. The RNAMiner web service is available at http://calla.rnet.missouri.edu/rnaminer/index.html.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号