首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Large sets of bioinformatical data provide a challenge in time consumption while solving the cluster identification problem, and that is why a parallel algorithm is so needed for identifying dense clusters in a noisy background. Our algorithm works on a graph representation of the data set to be analyzed. It identifies clusters through the identification of densely intraconnected subgraphs. We have employed a minimum spanning tree (MST) representation of the graph and solve the cluster identification problem using this representation. The computational bottleneck of our algorithm is the construction of an MST of a graph, for which a parallel algorithm is employed. Our high-level strategy for the parallel MST construction algorithm is to first partition the graph, then construct MSTs for the partitioned subgraphs and auxiliary bipartite graphs based on the subgraphs, and finally merge these MSTs to derive an MST of the original graph. The computational results indicate that when running on 150 CPUs, our algorithm can solve a cluster identification problem on a data set with 1,000,000 data points almost 100 times faster than on single CPU, indicating that this program is capable of handling very large data clustering problems in an efficient manner. We have implemented the clustering algorithm as the software CLUMP.  相似文献   

6.
7.
Text mining for translational bioinformatics is a new field with tremendous research potential. It is a subfield of biomedical natural language processing that concerns itself directly with the problem of relating basic biomedical research to clinical practice, and vice versa. Applications of text mining fall both into the category of T1 translational research—translating basic science results into new interventions—and T2 translational research, or translational research for public health. Potential use cases include better phenotyping of research subjects, and pharmacogenomic research. A variety of methods for evaluating text mining applications exist, including corpora, structured test suites, and post hoc judging. Two basic principles of linguistic structure are relevant for building text mining applications. One is that linguistic structure consists of multiple levels. The other is that every level of linguistic structure is characterized by ambiguity. There are two basic approaches to text mining: rule-based, also known as knowledge-based; and machine-learning-based, also known as statistical. Many systems are hybrids of the two approaches. Shared tasks have had a strong effect on the direction of the field. Like all translational bioinformatics software, text mining software for translational bioinformatics can be considered health-critical and should be subject to the strictest standards of quality assurance and software testing.

What to Learn in This Chapter

Text mining is an established field, but its application to translational bioinformatics is quite new and it presents myriad research opportunities. It is made difficult by the fact that natural (human) language, unlike computer language, is characterized at all levels by rampant ambiguity and variability. Important sub-tasks include gene name recognition, or finding mentions of gene names in text; gene normalization, or mapping mentions of genes in text to standard database identifiers; phenotype recognition, or finding mentions of phenotypes in text; and phenotype normalization, or mapping mentions of phenotypes to concepts in ontologies. Text mining for translational bioinformatics can necessitate dealing with two widely varying genres of text—published journal articles, and prose fields in electronic medical records. Research into the latter has been impeded for years by lack of public availability of data sets, but this has very recently changed and the field is poised for rapid advances. Like all translational bioinformatics software, text mining software for translational bioinformatics can be considered health-critical and should be subject to the strictest standards of quality assurance and software testing.
This article is part of the “Translational Bioinformatics” collection for PLOS Computational Biology.
  相似文献   

8.
9.
狂犬病作为一种急性人畜共患疾病,其致死率接近100%.而湖北省作为我国中部狂犬病高发地之一,开展该省狂犬病的流行病学调查不仅有助于了解我国当前面临的狂犬病疫情风险,还能为当地及全国狂犬病防控工作提供有效的参考意见.首先运用描述性分析发现湖北省狂犬病发病人数随时间呈下降趋势,而狂犬病暴露人数则呈上升趋势,且近年来中西部地...  相似文献   

10.
11.
12.
Genetic and pharmacological perturbation experiments, such as deleting a gene and monitoring gene expression responses, are powerful tools for studying cellular signal transduction pathways. However, it remains a challenge to automatically derive knowledge of a cellular signaling system at a conceptual level from systematic perturbation-response data. In this study, we explored a framework that unifies knowledge mining and data mining towards the goal. The framework consists of the following automated processes: 1) applying an ontology-driven knowledge mining approach to identify functional modules among the genes responding to a perturbation in order to reveal potential signals affected by the perturbation; 2) applying a graph-based data mining approach to search for perturbations that affect a common signal; and 3) revealing the architecture of a signaling system by organizing signaling units into a hierarchy based on their relationships. Applying this framework to a compendium of yeast perturbation-response data, we have successfully recovered many well-known signal transduction pathways; in addition, our analysis has led to many new hypotheses regarding the yeast signal transduction system; finally, our analysis automatically organized perturbed genes as a graph reflecting the architecture of the yeast signaling system. Importantly, this framework transformed molecular findings from a gene level to a conceptual level, which can be readily translated into computable knowledge in the form of rules regarding the yeast signaling system, such as “if genes involved in the MAPK signaling are perturbed, genes involved in pheromone responses will be differentially expressed.”  相似文献   

13.
14.
Genomies, Proteomics & Bioinformatics (Geno., Prot.& Bioinfo.) is sponsored by the Institute of Genetics and Developmental Biology of Chinese Academy of Sciences (CAS), managed and edited by Beijing Genomics Institute (BGI), CAS, and published by the Science Press, Beijing, China. Geno., Prot. & Bioinfo. welcomes high-quality research papers presenting novel data on the topics of genomics, proteomics and bioinformatics. New data are published as research papers in the form of original articles and research letters. Papers describing innovative methods and techniques as well as resources providing primary scientific  相似文献   

15.
The discrete data structure and large sequencing depth of RNA sequencing (RNA-seq) experiments can often generate outlier read counts in one or more RNA samples within a homogeneous group. Thus, how to identify and manage outlier observations in RNA-seq data is an emerging topic of interest. One of the main objectives in these research efforts is to develop statistical methodology that effectively balances the impact of outlier observations and achieves maximal power for statistical testing. To reach that goal, strengthening the accuracy of outlier detection is an important precursor. Current outlier detection algorithms for RNA-seq data are executed within a testing framework and may be sensitive to sparse data and heavy-tailed distributions. Therefore, we propose a univariate algorithm that utilizes a probabilistic approach to measure the deviation between an observation and the distribution generating the remaining data and implement it within in an iterative leave-one-out design strategy. Analyses of real and simulated RNA-seq data show that the proposed methodology has higher outlier detection rates for both non-normalized and normalized negative binomial distributed data.  相似文献   

16.
17.
Small RNA RNA-seq for microRNAs (miRNAs) is a rapidly developing field where opportunities still exist to create better bioinformatics tools to process these large datasets and generate new, useful analyses. We built miRge to be a fast, smart small RNA-seq solution to process samples in a highly multiplexed fashion. miRge employs a Bayesian alignment approach, whereby reads are sequentially aligned against customized mature miRNA, hairpin miRNA, noncoding RNA and mRNA sequence libraries. miRNAs are summarized at the level of raw reads in addition to reads per million (RPM). Reads for all other RNA species (tRNA, rRNA, snoRNA, mRNA) are provided, which is useful for identifying potential contaminants and optimizing small RNA purification strategies. miRge was designed to optimally identify miRNA isomiRs and employs an entropy based statistical measurement to identify differential production of isomiRs. This allowed us to identify decreasing entropy in isomiRs as stem cells mature into retinal pigment epithelial cells. Conversely, we show that pancreatic tumor miRNAs have similar entropy to matched normal pancreatic tissues. In a head-to-head comparison with other miRNA analysis tools (miRExpress 2.0, sRNAbench, omiRAs, miRDeep2, Chimira, UEA small RNA Workbench), miRge was faster (4 to 32-fold) and was among the top-two methods in maximally aligning miRNAs reads per sample. Moreover, miRge has no inherent limits to its multiplexing. miRge was capable of simultaneously analyzing 100 small RNA-Seq samples in 52 minutes, providing an integrated analysis of miRNA expression across all samples. As miRge was designed for analysis of single as well as multiple samples, miRge is an ideal tool for high and low-throughput users. miRge is freely available at http://atlas.pathology.jhu.edu/baras/miRge.html.  相似文献   

18.

Objectives

The sequencing by the PolyA selection is the most common approach for library preparation. With limited amount or degraded RNA, alternative protocols such as the NuGEN have been developed. However, it is not yet clear how the different library preparations affect the downstream analyses of the broad applications of RNA sequencing.

Methods and Materials

Eight human mammary epithelial cell (HMEC) lines with high quality RNA were sequenced by Illumina’s mRNA-Seq PolyA selection and NuGEN ENCORE library preparation. The following analyses and comparisons were conducted: 1) the numbers of genes captured by each protocol; 2) the impact of protocols on differentially expressed gene detection between biological replicates; 3) expressed single nucleotide variant (SNV) detection; 4) non-coding RNAs, particularly lincRNA detection; and 5) intragenic gene expression.

Results

Sequences from the NuGEN protocol had lower (75%) alignment rate than the PolyA (over 90%). The NuGEN protocol detected fewer genes (12–20% less) with a significant portion of reads mapped to non-coding regions. A large number of genes were differentially detected between the two protocols. About 17–20% of the differentially expressed genes between biological replicates were commonly detected between the two protocols. Significantly higher numbers of SNVs (5–6 times) were detected in the NuGEN samples, which were largely from intragenic and intergenic regions. The NuGEN captured fewer exons (25% less) and had higher base level coverage variance. While 6.3% of reads were mapped to intragenic regions in the PolyA samples, the percentages were much higher (20–25%) for the NuGEN samples. The NuGEN protocol did not detect more known non-coding RNAs such as lincRNAs, but targeted small and “novel” lincRNAs.

Conclusion

Different library preparations can have significant impacts on downstream analysis and interpretation of RNA-seq data. The NuGEN provides an alternative for limited or degraded RNA but it has limitations for some RNA-seq applications.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号