首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
  2021年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   6篇
  2011年   1篇
  2008年   2篇
  2007年   1篇
  2000年   1篇
排序方式: 共有16条查询结果,搜索用时 31 毫秒
1.
2.
Milk ceruloplasmin and its expression by mammary gland and liver in pigs   总被引:7,自引:0,他引:7  
Concentrations of ceruloplasmin and copper in milk and blood plasma, the nature of milk ceruloplasmin, and the effects of lactation and gestation on these parameters, as well as the expression of ceruloplasmin mRNA by the mammary gland, were examined in pigs. As seen previously in humans, ceruloplasmin and copper concentrations in sow milk were much higher a few days after birth than 1 month later, averaging 26.5 and 6.6 mg ceruloplasmin/L (by immunoassay) and 1.67 and 0.34 mg total Cu/L, on days 3 and 33 postpartum, respectively. Values for ceruloplasmin oxidase activity (measured with p-phenylene diamine) were 7.8 and 1.3 nmol/min/L, respectively. Daily milk ceruloplasmin production went from 61 to 22 mg/day and daily copper output from 38 to 12 mg/day. In contrast, there was little or no variation in serum ceruloplasmin concentration during lactation or gestation, although total plasma copper was high at the end of gestation. Milk ceruloplasmin was of the same apparent size as serum ceruloplasmin, as determined by SDS-PAGE and immunoblotting, and ceruloplasmin mRNAs of liver and mammary gland were indistinguishable by Northern analysis and RT-PCR of the various exons. Expression of total RNA and ceruloplasmin mRNA, as detected in biopsies of mammary gland, increased markedly upon onset of lactation and then declined during the next month in conjunction with a drop in milk ceruloplasmin production. The results indicate that milk ceruloplasmin, while being the same protein as in plasma, is not derived from the plasma but is produced by the mammary gland.  相似文献   
3.
4.
The aspartate in the prototypical integrin-binding motif Arg-Gly-Asp binds the integrin βA domain of the β-subunit through a divalent cation at the metal ion-dependent adhesion site (MIDAS). An auxiliary metal ion at a ligand-associated metal ion-binding site (LIMBS) stabilizes the metal ion at MIDAS. LIMBS contacts distinct residues in the α-subunits of the two β3 integrins αIIbβ3 and αVβ3, but a potential role of this interaction on stability of the metal ion at LIMBS in β3 integrins has not been explored. Equilibrium molecular dynamics simulations of fully hydrated β3 integrin ectodomains revealed strikingly different conformations of LIMBS in unliganded αIIbβ3 versus αVβ3, the result of stronger interactions of LIMBS with αV, which reduce stability of the LIMBS metal ion in αVβ3. Replacing the αIIb-LIMBS interface residue Phe191 in αIIb (equivalent to Trp179 in αV) with Trp strengthened this interface and destabilized the metal ion at LIMBS in αIIbβ3; a Trp179 to Phe mutation in αV produced the opposite but weaker effect. Consistently, an F191/W substitution in cellular αIIbβ3 and a W179/F substitution in αVβ3 reduced and increased, respectively, the apparent affinity of Mn2+ to the integrin. These findings offer an explanation for the variable occupancy of the metal ion at LIMBS in αVβ3 structures in the absence of ligand and provide new insights into the mechanisms of integrin regulation.  相似文献   
5.
6.
Clinically, excessive ω-6 polyunsaturated fatty acid (PUFA) and inadequate ω-3 PUFA have been associated with enhanced risks for developing ulcerative colitis. In rodent models, ω-3 PUFAs have been shown to either attenuate or exacerbate colitis in different studies. We hypothesized that a high ω-6: ω-3 PUFA ratio would increase colitis susceptibility through the microbe-immunity nexus. To address this, we fed post-weaned mice diets rich in ω-6 PUFA (corn oil) and diets supplemented with ω-3 PUFA (corn oil+fish oil) for 5 weeks. We evaluated the intestinal microbiota, induced colitis with Citrobacter rodentium and followed disease progression. We found that ω-6 PUFA enriched the microbiota with Enterobacteriaceae, Segmented Filamentous Bacteria and Clostridia spp., all known to induce inflammation. During infection-induced colitis, ω-6 PUFA fed mice had exacerbated intestinal damage, immune cell infiltration, prostaglandin E2 expression and C. rodentium translocation across the intestinal mucosae. Addition of ω-3 PUFA on a high ω-6 PUFA diet, reversed inflammatory-inducing microbial blooms and enriched beneficial microbes like Lactobacillus and Bifidobacteria, reduced immune cell infiltration and impaired cytokine/chemokine induction during infection. While, ω-3 PUFA supplementation protected against severe colitis, these mice suffered greater mortality associated with sepsis-related serum factors such as LPS binding protein, IL-15 and TNF-α. These mice also demonstrated decreased expression of intestinal alkaline phosphatase and an inability to dephosphorylate LPS. Thus, the colonic microbiota is altered differentially through varying PUFA composition, conferring altered susceptibility to colitis. Overall, ω-6 PUFA enriches pro-inflammatory microbes and augments colitis; but prevents infection-induced systemic inflammation. In contrast, ω-3 PUFA supplementation reverses the effects of the ω-6 PUFA diet but impairs infection-induced responses resulting in sepsis. We conclude that as an anti-inflammatory agent, ω-3 PUFA supplementation during infection may prove detrimental when host inflammatory responses are critical for survival.  相似文献   
7.
The function-blocking, non-RGD-containing, and primate-specific mouse monoclonal antibody 17E6 binds the αV subfamily of integrins. 17E6 is currently in phase II clinical trials for treating cancer. To elucidate the structural basis of recognition and the molecular mechanism of inhibition, we crystallized αVβ3 ectodomain in complex with the Fab fragment of 17E6. Protein crystals grew in presence of the activating cation Mn2+. The integrin in the complex and in solution assumed the genuflected conformation. 17E6 Fab bound exclusively to the Propeller domain of the αV subunit. At the core of αV-Fab interface were interactions involving Propeller residues Lys-203 and Gln-145, with the latter accounting for primate specificity. The Propeller residue Asp-150, which normally coordinates Arg of the ligand Arg-Gly-Asp motif, formed contacts with Arg-54 of the Fab that were expected to reduce soluble FN10 binding to cellular αVβ3 complexed with 17E6. This was confirmed in direct binding studies, suggesting that 17E6 is an allosteric inhibitor of αV integrins.  相似文献   
8.
Fibroblast growth factor-21 (FGF-21) is a metabolic regulator that can influence glucose and lipid control in diabetic rodents and primates. We demonstrate that betaKlotho is an integral part of an activated FGF-21-betaKlotho-FGF receptor (FGFR) complex thus a critical subunit of the FGF-21 receptor. Cells lacking betaKlotho did not respond to FGF-21; the introduction of betaKlotho to these cells conferred FGF-21-responsiveness and recapitulated the entire scope of FGF-21 signaling observed in naturally responsive cells. Interestingly, FGF-21-mediated effects are heparin independent suggesting that betaKlotho plays a role in FGF-21 activity similar to the one played by heparin in the signaling of conventional FGFs. Moreover, in addition to conferring specificity for FGF-21, betaKlotho appears to support FGF-19 activity and mediates the receptor selectivity profile of FGF-19. All together, these results indicate that betaKlotho and FGFRs form the cognate FGF-21 receptor complex, mediating FGF-21 cellular specificity and physiological effects.  相似文献   
9.
Graves’ Disease is the most common organ-specific autoimmune disease and has been linked in small pilot studies to taxonomic markers within the gut microbiome. Important limitations of this work include small sample sizes and low-resolution taxonomic markers. Accordingly, we studied 162 gut microbiomes of mild and severe Graves’ disease (GD) patients and healthy controls. Taxonomic and functional analyses based on metagenome-assembled genomes (MAGs) and MAG-annotated genes, together with predicted metabolic functions and metabolite profiles, revealed a well-defined network of MAGs, genes and clinical indexes separating healthy from GD subjects. A supervised classification model identified a combination of biomarkers including microbial species, MAGs, genes and SNPs, with predictive power superior to models from any single biomarker type (AUC = 0.98). Global, cross-disease multi-cohort analysis of gut microbiomes revealed high specificity of these GD biomarkers, notably discriminating against Parkinson’s Disease, and suggesting that non-invasive stool-based diagnostics will be useful for these diseases.Subject terms: Microbiome, Biomarkers, Population genetics  相似文献   
10.
This study examined the effects of 6 weeks of moderate- (MD) and high-intensity endurance training (HD) and resistance training (RD) on the vasorelaxation responsiveness of the aorta, iliac, and femoral vessels in type 1 diabetic (D) rats. Vasorelaxation to acetylcholine was modeled as a mono-exponential function. A potential mediator of vasorelaxation, endothelial nitric oxide synthase (e-NOS) was determined by Western blots. Vessel lumen-to-wall ratios were calculated from H&E stains. The vasorelaxation time-constant (τ) (s) was smaller in control (C) (7.2±3.7) compared to D (9.1±4.4) and it was smaller in HD (5.4±1.5) compared to C, D, RD (8.3±3.7) and MD (8.7±3.8) (p<0.05). The rate of vasorelaxation (%·s−1) was larger in HD (2.7±1.2) compared to C (2.0±1.2), D (2.0±1.5), RD (2.0±1.0), and MD (2.0±1.2) (p<0.05). τ vasorelaxation was smaller in the femoral (6.9±3.7) and iliac (6.9±4.7) than the aorta (9.0±5.0) (p<0.05). The rate of vasorelaxation was progressively larger from the femoral (3.1±1.4) to the iliac (2.0±0.9) and to the aorta (1.3±0.5) (p<0.05). e-NOS content (% of positive control) was greater in HD (104±90) compared to C (71±64), D (85±65), RD (69±43), and MD (76±44) (p<0.05). e-NOS normalized to lumen-to-wall ratio (%·mm−1) was larger in the femoral (11.7±11.1) compared to the aorta (3.2±1.9) (p<0.05). Although vasorelaxation responses were vessel-specific, high-intensity endurance training was the most effective exercise modality in restoring the diabetes-related loss of vascular responsiveness. Changes in the vasoresponsiveness seem to be endothelium-dependent as evidenced by the greater e-NOS content in HD and the greater normalized e-NOS content in the smaller vessels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号