首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   4篇
  2023年   2篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2012年   3篇
  2011年   4篇
  2010年   4篇
  2009年   1篇
  2008年   2篇
  2006年   3篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2002年   4篇
  1999年   2篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1988年   2篇
  1982年   1篇
  1947年   1篇
  1944年   1篇
排序方式: 共有56条查询结果,搜索用时 25 毫秒
1.
Physiognomy, structure and floristic composition of one hectare of lowland tropical rain forest was studied in detail at Los Tuxtlas, Mexico. Physiognomically, the Los Tuxtlas forest should be classified as lowland tropical high evergreen rain forest. The forest showed a closed canopy at 30–35 m. Of all woody, non-climbing species with a DBH1.0 cm 89.4% (94.5% of all individuals) were evergreen, 25.4% (59.5% of the individuals) had compound leaves, and over 80% of species (and individuals) had leaves in the notophyll and mesophyll size classes. The forest structure was characterized by a low density (2976 individuals with a DBH1.0 cm, 346 individuals with a DBH10.0 cm, per ha, excluding vines) with an average basal area (38.1 m2, DBH1.0 cm, 34.9 m2, DBH10.0 cm, per ha, excluding vines). This was attributed to the relative maturity of the forest on the study plot. The study plot contained 234 species (11 208 individuals with a height 0.5 m), of which 55.1% (34.8% of individuals) were trees, 9.4% (6.8%) shrubs, 3.4% (44.3%) palms, 20.1% (5.2%) vines, 6.8% (8.7%) herbs and 5.1% (0.3%) of unknown lifeform. Furthermore, 58 species of epiphytes and hemi-epiphytes were found. Diversity of trees, shrubs and palms with a DBH1.0 cm was calculated as Shannon-Wiener index (4.65), Equitability index (0.65), and Simpson index (0.10). The dominance-diversity curve showed a lognormal form, characteristic for tropical rain forest. The community structure was characterized by a relative dominance of Astrocaryum mexicanum in the understorey, Pseudolmedia oxyphyllaria in the middle storeys, and Nectandra ambigens in the canopy. Species population structures of 31 species showed three characteristic patterns, differentiated by recruitment: continuously high, discontinuously high, and continuously low recruitment. Height/diameter and crown cover/diameter diagrams suggested a very gradual shift from height growth to crown growth during tree development. Forest turnover was calculated as 138 years. Compared to other tropical rain forests the Los Tuxtlas forest had 1. similar leaf physiognomical characteristics, 2. a lower diversity, 3. a lower density, 4. an average basal area, and 5. a slow canopy turnover.  相似文献   
2.
A piece of mandible and several isolated teeth are reported from fluviatile sediments older than 4 million years at East Lake Turkana. They most closely resemble hominids from Laetoli, Tanzania and Hadar, Ethiopia which have been assigned to Australopithecus afarensis. © 1994 Wiley-Liss, Inc.  相似文献   
3.
4.
Afropithecus turkanensis, a 17-17.5 million year old large-bodied hominoid from Kenya, has previously been reported to be the oldest known thick-enamelled Miocene ape. Most investigations of enamel thickness in Miocene apes have been limited to opportunistic or destructive studies of small samples. Recently, more comprehensive studies of enamel thickness and microstructure in Proconsul, Lufengpithecus, and Dryopithecus, as well as extant apes and fossil humans, have provided information on rates and patterns of dental development, including crown formation time, and have begun to provide a comparative context for interpretation of the evolution of these characters throughout the past 20 million years of hominoid evolution. In this study, enamel thickness and aspects of the enamel microstructure in two A. turkanensis second molars were quantified and provide insight into rates of enamel apposition, numbers of cells actively secreting enamel, and the time required to form regions of the crown. The average value for relative enamel thickness in the two molars is 21.4, which is a lower value than a previous analysis of this species, but which is still relatively thick compared to extant apes. This value is similar to those of several Miocene hominoids, a fossil hominid, and modern humans. Certain aspects of the enamel microstructure are similar to Proconsul nyanzae, Dryopithecus laietanus, Lufengpithecus lufengensis, Graecopithecus freybergi and Pongo pygmaeus, while other features differ from extant and fossil hominoids. Crown formation times for the two teeth are 2.4-2.6 years and 2.9-3.1 years respectively. These times are similar to a number of extant and fossil hominoids, some of which appear to show additional developmental similarities, including thick enamel. Although thick enamel may be formed through several developmental pathways, most Miocene hominoids and fossil hominids with relatively thick enamel are characterized by a relatively long period of cuspal enamel formation and a rapid rate of enamel secretion throughout the whole cusp, but a shorter total crown formation time than thinner-enamelled extant apes.  相似文献   
5.
Global plant trait studies have revealed fundamental trade-offs in plant resource economics. We evaluated such trait trade-offs during secondary succession in two species-rich tropical ecosystems that contrast in precipitation: dry deciduous and wet evergreen forests of Mexico. Species turnover with succession in dry forest largely relates to increasing water availability and in wet forest to decreasing light availability. We hypothesized that while functional trait trade-offs are similar in the two forest systems, the successful plant strategies in these communities will be different, as contrasting filters affect species turnover. Research was carried out in 15 dry secondary forest sites (5-63 years after abandonment) and in 17 wet secondary forest sites (<1-25 years after abandonment). We used 11 functional traits measured on 132 species to make species-trait PCA biplots for dry and wet forest and compare trait trade-offs. We evaluated whether multivariate plant strategies changed during succession, by calculating a ‘Community-Weighted Mean’ plant strategy, based on species scores on the first two PCA-axes. Trait spectra reflected two main trade-off axes that were similar for dry and wet forest species: acquisitive versus conservative species, and drought avoiding species versus evergreen species with large animal-dispersed seeds. These trait associations were consistent when accounting for evolutionary history. Successional changes in the most successful plant strategies reflected different functional trait spectra depending on the forest type. In dry forest the community changed from having drought avoiding strategies early in succession to increased abundance of evergreen strategies with larger seeds late in succession. In wet forest the community changed from species having mainly acquisitive strategies to those with more conservative strategies during succession. These strategy changes were explained by increasing water availability during dry forest succession and increasing light scarcity during wet forest succession. Although similar trait spectra were observed among dry and wet secondary forest species, the consequences for succession were different resulting from contrasting environmental filters.  相似文献   
6.
Zoospores of plant pathogenic oomycetes exhibit distinct swimming speeds and patterns under natural conditions. Zoospore swimming is influenced by ion homeostasis and changes in the ionic composition of media. Therefore, we used video microscopy to investigate swimming patterns of five oomycete species in response to changes in potassium homeostasis. In general, zoospore speed tended to be negatively correlated with zoospore size. Three Phytophthora species (Phytophthora palmivora, Phytophthora megakarya, and Phytophthora infestans) swam in straight patterns with speeds ranging from 50 to 250 microm/s whereas two Pythium species (Pythium aphanidermatum and Pythium dissotocum) swam at similar speeds ranging from 180 to 225 microm/s with a pronounced helical trajectory and varying amplitudes. High external concentrations of potassium salts reduced the swimming speed of Ph. palmivora and induced encystment. This was not observed for Py. aphanidermatum. Application of the potassium ionophores gramicidin, nigericin and valinomycin resulted in reduced swimming speeds and changes in the swimming patterns of the Phytophthora species. Therefore, potassium ions play a key role in regulating zoospore behavior.  相似文献   
7.
Aim The purpose of the study was to assess the degree of floristic differentiation between tropical dry forest (TDF) and savanna occurring in a single landscape. This comparison provides information on the responses of vegetation to the prevailing environmental conditions, while it also allows us to make inferences about large‐scale events and processes, both biogeographical and evolutionary. Our approach included three levels of analysis: (1) taxonomic, (2) morphological and (3) vegetational. Location The seasonal dry tropical landscape in the Nizanda region, Oaxaca State, southern Mexico. The landscape comprises a complex vegetation mosaic in which tropical dry forest and savannas are the most conspicuous components. Methods Comparisons between TDF and savanna were based on inventories for these communities produced after 8 years of botanical survey. At the taxonomic level, the relative representation of taxa of different hierarchical levels in each community was examined. Morphological analyses required the classification of species on each of three criteria: (1) growth form, (2) life form and (3) growth habit. Vegetation level analysis was based on the frequencies of taxa in one hundred 100‐m2 composition plots with which matrices of binary data were constructed for species, genera and families. These were subjected to classification analysis with Ward's method and using Euclidean distances as the dissimilarity algorithm. Results The combined flora for both communities comprised 600 species, 375 genera and 94 families; between them they shared 31, 40 and 34 taxa, respectively. The corresponding Sørensen similarity values were 10%, 21% and 72%, respectively. Ranking genera and families according to their species richness displayed large differences between savanna and TDF. Large differences between these communities were observed for Acanthaceae, Cactaceae, Euphorbiaceae and Mimosaceae, whereas Fabaceae and Asteraceae had similar high ranks according to the species richness in the two systems. The growth form spectrum diverged between the two communities, with TDF having more trees, shrubs and climbers. Savanna was characterised by forbs and graminoid herbs. Growth habit spectra revealed a clear dominance of herbaceous and suffruticose plants in savanna, and of woody elements and epiphytes in TDF. Regarding Raunkiaer's life forms, savanna had relatively more hemicryptophytes, and TDF more phanerophytes. Classification analyses showed that savanna and TDF forest samples kept their identities, regardless of taxonomic level (species, genera and families) at which the analyses were performed. Main conclusions The TDF and savanna of Nizanda represent two floristic systems with a large degree of differentiation at all taxonomic levels and patterns of morphological attributes. This suggest that the two floristic sets have evolved independently for extended periods of time, despite their close proximity. One important implication of this floristic differentiation is the large joint contribution made by these communities to the regional flora.  相似文献   
8.
The 3.5-Myr-old hominin cranium KNM-WT 40000 from Lomekwi, west of Lake Turkana, has been assigned to a new hominin genus and species, Kenyanthropus platyops, on the basis of a unique combination of derived facial and primitive neurocranial features. Central to the diagnosis of K. platyops is the morphology of the maxilla, characterized by a flat and relatively orthognathic subnasal region, anteriorly placed zygomatic processes and small molars. To study this morphology in more detail, we compare the maxillae of African Plio-Pleistocene hominin fossils and samples of modern humans, chimpanzees and gorillas, using conventional and geometric morphometric methods. Computed tomography scans and detailed preparation of the KNM-WT 40000 maxilla enable comprehensive assessment of post-mortem changes, so that landmark data characterizing the morphology can be corrected for distortion. Based on a substantially larger comparative sample than previously available, the results of statistical analyses show that KNM-WT 40000 is indeed significantly different from and falls outside the known range of variation of species of Australopithecus and Paranthropus, contemporary Australopithecus afarensis in particular. These results support the attribution of KNM-WT 40000 to a separate species and the notion that hominin taxonomic diversity in Africa extends back well into the Middle Pliocene.  相似文献   
9.
Tooth enamel of nine Middle Miocene mammalian herbivores from Fort Ternan, Kenya, was analyzed for δ13C and δ18O. The δ18O values of the tooth enamel compared with pedogenic and diagenetic carbonate confirm the use of stable isotope analysis of fossil tooth enamel as a paleoenvironmental indicator. Furthermore, the δ18O of tooth enamel indicates differences in water sources between some of the mammals. The δ13C values of tooth enamel ranged from −8·6–−13·0‰ which is compatible with a pure C3diet, though the possibility of a small C4fraction in the diet of a few of the specimens sampled is not precluded. The carbon isotopic data do not support environmental reconstructions of a Serengeti-typed wooded grassland with a significant proportion of C4grasses. This study does not preclude the presence of C3grasses at Fort Ternan; it is possible that C3grasses could have had a wider geographic range if atmospheric CO2levels were higher than the present values.  相似文献   
10.
Despite its importance for carbon storage and other ecosystem functions, the variation in vegetation canopy height is not yet well understood. We examined the relationship between this community attribute and environmental heterogeneity in a tropical dry forest of southern Mexico. We sampled vegetation in 15 sites along a 100‐km coastal stretch of Oaxaca State, and measured the heights of all woody plants (excluding lianas). The majority of the ca. 4000 individuals recorded concentrated in the 4–8 m height range. We defined three plant sets to describe overall community canopy height at each site: a set including all plants, a set made up by the tallest plants representing 10 percent of all individuals, and a set comprising the 10 tallest plants. For each site we computed maximum height and the mean and median heights of the three sets. Significant collinearity was observed between the seven resulting height variables, but null distributions constructed through bootstrap revealed their different behaviors as functions of species richness and density of individuals. Through linear modeling and a model selection procedure, we identified 21 models that best described the variation in canopy height variables. These models pointed out to soil (measured as PC1 of a principal component analysis performed on 10 soil variables), water stress, and elevation as the main drivers of canopy height variation in the region. In the event of increasing water stress resulting from global climate change, the studied tropical dry forests could become shorter and thus decrease their carbon storage potential.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号