首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fieldwork in the Yuanmou Basin of southern China has uncovered a large assemblage of late Miocene hominoid fossils assigned to Lufengpithecus hudienensis. Two mandibular first molars from this species were made available for histological analysis as part of a larger ongoing study on the ontogeny of dental development in Miocene to Recent hominoids. Results are compared with published and unpublished data on tooth growth in a wide range of extant and extinct hominoids. The Yuanmou molars are smaller than those of Lufengpithecus lufengensis and have markedly shorter crown formation times, overlapping slightly with Pan, but most similar to Proconsul and Dryopithecus. In other aspects of molar development (including enamel extension rates and enamel thickness), L. hudienensis shows similarities with all extant hominoids, in particular, Pongo. Ultimately, charting the ontogeny of molar crown formation may help shed light on the relationship of Lufengpithecus hudienensis to orangutans, and other Miocene to Recent hominoids.  相似文献   

2.
This study examined enamel thickness and dental development in Graecopithecus freybergi (=Ouranopithecus macedoniensis), a late Miocene hominoid from Greece. Comparative emphasis was placed on Proconsul, Afropithecus, Dryopithecus, Lufengpithecus, and Gigantopithecus, fossil apes that vary in enamel thickness and patterns of development. In addition, comparisons were made with Paranthropus to investigate reported similarities in enamel thickness. Several sections of a right lower third molar were generated, from which enamel thickness and aspects of the enamel and dentine microstructure were determined. Data from parallel sections shed light on the effects of section obliquity, which may influence determination of both enamel thickness and crown formation time. Graecopithecus has relatively thick enamel, greater than any fossil ape but less than Paranthropus, with which it does show similarity in prism path and Hunter-Schreger band morphology. Aspects of enamel microstructure, including the periodicity and daily secretion rate, are similar to most extant and fossil apes, especially Afropithecus. Total crown formation time was estimated to be 3.5 years, which is greater than published values for modern Homo, similar to Pan, and less than Gigantopithecus. Data on dentine secretion and extension rates suggest that coronal dentine formation was relatively slow, but comparative data are very limited. Graecopithecus shares a crown formation pattern with several thick-enamelled hominoids, in which cuspal enamel makes up a very large portion of crown area, is formed by a large cell cohort, and is formed in less than half of the total time of formation. In Paranthropus, this pattern appears to be even more extreme, which may result in thicker enamel formed in an even shorter time. Developmental similarities between Paranthropus and Graecopithecus are interpreted to be parallelisms due to similarities in the mechanical demands of their diets.  相似文献   

3.
The late Miocene hominoid Lufengpithecus from Yunnan Province, China, is crucial for understanding hominoid evolution in Asia. Given that age at first permanent molar emergence is a key life-history trait in primates, the present study determined the age at death of the Lufengpithecus lufengensis juvenile PA868, which was in the process of erupting its first molar. Using a perikymata periodicity of 7-11 days, along with estimation of cusp formation time and the postnatal delay of crown mineralization, perikymata counts obtained from the permanent central incisor and canine germs indicate that the age at death of PA868 was 2.4-4.5 years based on the central incisor germ, and 2.5-4.7 years based on the canine germ. The age at the first molar emergence was actually slightly younger (by about 0.3 years), as demonstrated by tiny wear facets on this tooth, which indicate that gingival emergence had occurred sometime before death. The average age at first molar emergence of Lufengpithecus lufengensis PA868 is estimated to be 3.2-3.3 years, with a range of 2.1-4.4 years. In comparison to extant primates and other fossil hominoids, the life history of Lufengpithecus lufengensis is similar to that of extant great apes and the Miocene hominoids Afropithecus turkanensis and Sivapithecus parvada, as well as Plio-Pleistocene Australopithecus, and different from monkeys, gibbons, and modern humans.  相似文献   

4.
步氏巨猿(Gigantopithecus blacki)是更新世时期生活于我国华南地区的一种超大型猿类, 它的体态特征和演化分类倍受关注。牙齿釉质厚度在探讨灵长类食性、环境适应以及系统演化方面具有重要意义。本文利用显微CT技术构建18颗巨猿臼齿虚拟模型, 测量其釉质厚度。将巨猿釉质厚度与现代人、现生类人猿、古人类、中新世古猿及其他现生灵长类进行比较, 从牙齿釉质厚度探讨巨猿的食性适应和系统演化问题。结果发现巨猿的实测釉质厚度是目前所有已知现生和化石灵长类中最厚的, 只有傍人、南非早期人属及奥兰诺古猿三种化石灵长类与之接近; 如果考虑不同物种牙齿与身体大小的关联因素, 相对釉质厚度指数显示巨猿属于"厚"釉质类型, 但非"超厚"类型, 低于奥兰诺古猿、傍人、南非早期人属; 巨猿与某些中新世古猿 (如原康修尔猿尼安萨种、非洲古猿)、南方古猿、东非早期人属、亚洲直立人以及现代人、现生卷尾猴的相对釉质厚度指数相近。巨猿的厚釉质特征与其食性和环境适应密切相关, 使得牙齿具有非常强的抗磨损功能, 能够适应长时间的咀嚼和研磨食物。从釉质厚度的系统演化角度推测, 厚釉质应该是人类祖先的特征性状, 巨猿有可能是早期人类支系演化过程中的一个特化旁支, 同时也不排除巨猿是从某种具有厚釉质的中新世古猿旁支平行演化而来的可能性。  相似文献   

5.
During the past decade, studies of enamel development have provided a broad temporal and geographic perspective on evolutionary developmental biology in Miocene hominoids. Here we report some of the first data for molar crown development in one hominoid genus, Sivapithecus. The data are compared to a range of extant and extinct hominoids. Crown formation times (CFTs), daily rates of enamel secretion (DSR), Retzius line number and periodicity, and relative enamel thickness (RET) were calculated in a mandibular first molar of Sivapithecus parvada and a maxillary first molar of Sivapithecus indicus from the Siwalik sequence of Pakistan. A CFT of 2.40 years for the protoconid of S. parvada and 2.25 years for the protocone of S. indicus lie within the range of first molar (M1) formation times for the majority of Miocene hominoids (1.96-2.40 years, excluding Proconsul heseloni), and are similar to an M(1) from Gorilla (2.31 years) and M(1)s from Pan (2.22-2.39 years). This is unlike the longer CFTs in modern humans, which appear to be linked with their extended growth period. In contrast to extant great apes and humans, daily rates of enamel secretion are rapid in the Sivapithecus M1s during the early stages of growth, which seems to be a common pattern for most Miocene apes. The rapid accumulation of cuspal enamel in the Sivapithecus molars produced thicker enamel than either Pan or Gorilla in a comparable period of time. Future studies on larger samples of living and fossil hominoids are needed to clarify trends in crown development, which may be better understood in the context of life history strategies coupled with good data on body mass and brain size.  相似文献   

6.
Shape analyses of cross-sectional mandibular molar morphology, using Euclidean Distance Matrix Analysis, were performed on 79 late Miocene hominoid lower molars from Yuanmou of Yunnan Province, China. These molars were compared to samples of chimpanzee, gorilla, orangutan,Lufengpithecus lufengensis, Sivapithecus, Australopithecus afarensis, and human mandibular molars. Our results indicate that the cross-sectional shape of Yuanmou hominoid lower molars is more similar to the great apes that to humans. There are few differences between the Yuanmou,L. lufengensis, andSivapithecus molars in cross-sectional morphology, demonstrating strong affinities between these three late Miocene hominoids. All three of the fossil samples show strong similarities to orangutans. From this, we conclude that these late Miocene hominoids are more closely related to orangutants than to either the African great apes or humans.  相似文献   

7.
The palatofacial morphology of Proconsul africanus, P. nyanzae, P. major and Sivapithecus meteai is compared to extant catarrhines. The early Miocene hominoids (Proconsul) are unlike modern great apes, but retain a primitive catarrhine pattern more similar to some extant cercopthecoids. By middle Miocene times the typical hominoid palatofacial morphology can be recognized in at least one species (S. meteai) and this corresponds to the evolution of the postcranium in which the hominoid pattern is also only recognizable by the middle Miocene.  相似文献   

8.
胡荣  赵凌霞 《人类学学报》2012,31(4):371-380
釉面横纹的分布与数目可以反映牙齿生长发育的时间和速率变化, 在化石研究中能为复原个体生活史提供重要依据。本研究运用扫描电子显微镜观察华南化石猩猩门齿、犬齿釉面横纹分布与数目, 并估算门齿和犬齿牙冠形成时间, 结果如下: 牙冠从牙尖至牙颈方向釉面横纹分布密度有疏密变化, 牙尖釉面横纹密度小于10条/mm, 中间至牙颈釉面横纹密度较尖部增大, 大约10-15条/mm; 犬齿釉面横纹数目多于门齿, 雄性犬齿釉面横纹数目多于雌性; 根据釉面横纹计数及其生长周期的组织切片观察结果, 估算门齿牙冠形成时间大约为2.97-6.66年, 犬齿雄性长于雌性, 分别为6.25-11.31年和4.28-7.29年。与一些古猿、早期人类、现代人以及现生大猿比较, 华南化石猩猩釉面横纹整体密度稍大于南方古猿和傍人, 小于黑猩猩、大猩猩、现代人和禄丰古猿; 除侧门齿外, 华南化石猩猩釉面横纹数目明显多于南方古猿、傍人和现代人, 与大猩猩接近; 华南猩猩前部牙齿牙冠形成时间与现生大猿、禄丰古猿差别不大, 与现生猩猩最相近, 长于南方古猿和傍人。  相似文献   

9.
Among primates, age at first molar emergence is correlated with a variety of life history traits. Age at first molar emergence can therefore be used to broadly infer the life histories of fossil primate species. One method of determining age at first molar emergence is to determine the age at death of fossil individuals that were in the process of erupting their first molars. This was done for an infant partial mandible of Afropithecus turkanensis (KNM-MO 26) from the approximately 17.5 Ma site of Moruorot in Kenya. A range of estimates of age at death was calculated for this individual using the permanent lateral incisor germ preserved in its crypt, by combining the number and periodicity of lateral enamel perikymata with estimates of the duration of cuspal enamel formation and the duration of the postnatal delay in the inception of crown mineralization. Perikymata periodicity was determined using daily cross striations between adjacent Retzius lines in thin sections of two A. turkanensis molars from the nearby site of Kalodirr. Based on the position of the KNM-MO 26 M(1)in relation to the mandibular alveolar margin, it had not yet undergone gingival emergence. The projected time to gingival emergence was estimated based on radiographic studies of M(1)eruption in extant baboons and chimpanzees.The estimates of age at M(1)emergence in KNM-MO 26 range from 28.2 to 43.5 months, using minimum and average values from extant great apes and humans for the estimated growth parameters. Even the absolute minimum value is well outside the ranges of extant large Old World monkeys for which there are data (12.5 to <25 months), but is within the range of chimpanzees (25.7 to 48.0 months). It is inferred, therefore, that A. turkanensis had a life history profile broadly like that of Pan. This is additional evidence to that provided by Sivapithecus parvada (Function, Phylogeny, and Fossils: Miocene Hominoid Evolution and Adaptations, 1997, 173) that the prolonged life histories characteristic of extant apes were achieved early in the evolutionary history of the group. However, it is unclear at present whether life-history prolongation in apes represents the primitive catarrhine pace of life history extended through phyletic increase in body mass, or whether it is derived with respect to a primitive, size-adjusted life history that was broadly intermediate between those of extant hominoids and cercopithecoids. Life history evolution in primates as a whole may have occurred largely through a series of grade-shifts, with the establishment of fundamental life-history profiles early in the histories of major higher taxa. These may have included shifts that were largely body mass dependent, as well as those that occurred in the absence of significant changes in body mass.  相似文献   

10.
New dental remains of the fossil great ape Anoiapithecus brevirostris are described from the Middle Miocene local stratigraphic series of Abocador de Can Mata (ACM) in els Hostalets de Pierola (Vallès-Penedès Basin, NE Iberian Peninsula). These specimens correspond to maxillary fragments with upper teeth from two female individuals from two different localities: left P3–M1 (IPS41712) from ACM/C3-Aj (type locality; 11.9 Ma [millions of years ago]); and right M1–M2 and left P4–M2 (IPS35027) from ACM/C1-E* (12.3–12.2 Ma). Relative enamel thickness is also computed in the latter individual and re-evaluated in other Middle Miocene hominoids from ACM, in order to better assess their taxonomic affinities. With regard to maxillary sinus development, occlusal morphology, molar proportions and enamel thickness, the new specimens show greater resemblances with the (male) holotype specimen of A. brevirostris. They differ from Pierolapithecus catalaunicus in displaying less inflated crests, a more lingually-located hypocone, and relatively lower-crowned molars; from Dryopithecus fontani, in the relatively thicker enamel and lower-crowned molars; from Hispanopithecus spp., in the more inflated crown bases, less peripheral cusps and more restricted maxillary sinus; and from Hispanopithecus laietanus also in the thicker crests, more restricted occlusal foveae, and relatively lower-crowned molars. The new specimens of A. brevirostris show some slight differences compared with the holotype of this species: smaller size (presumably due to sexual size dimorphism), and less distally-tapering M2 occlusal contour (which is highly variable in both extant and extinct hominoids). The reported remains provide valuable new evidence on dental intraspecific variation and sexual dimorphism in Anoiapithecus. From a taxonomic viewpoint, they support the distinction of this taxon from both Dryopithecus and Pierolapithecus. From a chronostratigraphic perspective, IPS35027 from ACM/C1-E* enlarges the known temporal distribution of Anoiapithecus, further representing the oldest record (first appearance datum) of hominoids in the Iberian Peninsula.  相似文献   

11.
One of the few uncontested viewpoints in studies of enamel thickness is that the molars of the African apes, Pan and Gorilla, possess "thin" enamel, while Pongo and modern humans possess varying degrees of "thick" enamel, even when interspecific differences in overall body or tooth size are taken into account. Such studies focus primarily on estimates of the total volume of enamel relative to tooth size (i.e., "relative" enamel thickness), as this is thought to bear directly on questions concerning dietary proclivities and phylogenetic relationships. Only recently have studies shifted focus to examining differences in the distribution of enamel across the tooth crown, i.e., the patterning of enamel thickness, as this may contribute to more refined models of tooth function and dietary adaptations in extant hominoids. Additionally, this feature has been suggested to be a reliable indicator of taxonomic affinity in early hominins, though no study has specifically addressed whether species-specific patterns exist among known phena. The aims of this paper were to test more explicitly whether enamel thickness patterning provides valuable taxonomic, functional, and/or phylogenetic information for maxillary molars of large-bodied extant hominoids. A series of seven linear enamel thickness measurements was recorded in the plane of the mesial cusps in cross sections of a total of 62 maxillary molars of P. troglodytes, G. gorilla, P. pygmaeus, and H. sapiens to estimate the patterning of enamel thickness distribution. Results from a discriminant function analysis reveal that, overall, this trait reclassifies extant hominoid maxillary molars with 90% accuracy: 100% of extant Homo, 75. 0% of Pongo, 83.3% of Pan, and 66.7% of Gorilla are reclassified correctly, indicating that this feature possesses a strong taxonomic signal. Furthermore, differences in the structure of the enamel cap are evident among hominoids: modern humans differ from Pongo in possessing proportionally thicker enamel in areas of the crown associated with shearing activity; Pan molars are better designed than those of Gorilla for generating a greater component of crushing/grinding loads. Thus, African ape molars are structurally dissimilar, even though they are both considered to belong to a morphologically homogeneous "thin-enameled" group. Simple developmental mechanisms can be invoked to explain the sometimes subtle differences in the achievement of adult morphology. For instance, human and orangutan molar cusps possess a similar degree of enamel thickness, but the possibility exists that despite similarities in morphology, each species follows a different sequence of secretory activity of enamel to achieve the final, albeit similar, degree of enamel thickness. Such a finding would suggest that the shared possession of "thick" or "thin" enamel among species may be phylogenetically uninformative, as it would not represent a developmental synapomorphy.  相似文献   

12.
The anatomy of the wrist of two species of the early Miocene hominoid Proconsul is described based on new material collected on Rusinga Island, Kenya. These fossils generally confirm previous findings that the wrist of Proconsul is monkey-like in much of its morphology. However, the structure of the ulnar side of the wrist, particularly the ulnocarpal joint, is significantly different from that of extant monkeys and suggests some functional affinities with extant hominoids. Thus the wrist of Proconsul is neither monkey-like nor ape-like in its total morphology. Instead, it shows a unique combination of features which once again point to the oversimplicity of forcing fossil forms into categories based only on extant taxa.  相似文献   

13.
This paper reviews the non-dental morphological configuration of Miocene hominoids with special reference to the hypothesis of linear relationships between certain fossil species and living analogues. Metrical analysis of the wrist shows thatDryopithecus africanus andPliopithecus vindobonensis are unequivocally affiliated with the morphological pattern of quadrupedal monkeys. Similar analyses of the fossil hominoid elbow shows that they are more cercopithecoid-like than hominoid-like. Multivariate analysis of theP. vindobonensis shoulder in the matrix of extant Anthropoidea indicate that this putative hylobatine fossil shows no indication of even the initial development of hominoid features. The total morphological pattern of theD. africanus forelimb as assessed by principal coordinates analysis of allometrically adjusted shape variables has little resemblance toPan. Likewise, the feet and proximal femora of the Miocene fossils are unlike any living hominoid species. Even theD. africanus skull is similar to extant cercopithecoids in several features. Although ancestors cannot be expected to resemble descendants in every way, the striking dissimilarity between Miocene and extant hominoids seems to eliminate the consideration of a direct ancestor-descendant relationship between specific Miocene and modern forms.  相似文献   

14.
Absolutely thick molar enamel is consistent with large body size estimates and dietary inferences about Gigantopithecus blacki, which focus on tough or fibrous vegetation. In this study, 10 G. blacki molars demonstrating various stages of attrition were imaged using high-resolution microtomography. Three-dimensional average enamel thickness and relative enamel thickness measurements were recorded on the least worn molars within the sample (n = 2). Seven molars were also virtually sectioned through the mesial cusps and two-dimensional enamel thickness and dentine horn height measurements were recorded. Gigantopithecus has the thickest enamel of any fossil or extant primate in terms of absolute thickness. Relative (size-scaled) measures of enamel thickness, however, support a thick characterization (i.e., not "hyper-thick"); G. blacki relative enamel thickness overlaps slightly with Pongo and completely with Homo. Gigantopithecus blacki dentine horns are relatively short, similar to (but shorter than) those of Pongo, which in turn are shorter than those of humans and African apes. Gigantopithecus blacki molar enamel (and to a lesser extent, that of Pongo pygmaeus) is distributed relatively evenly across the occlusal surface compared with the more complex distribution of enamel thickness in Homo sapiens. The combination of evenly distributed occlusal enamel and relatively short dentine horns in G. blacki results in a flat and low-cusped occlusal surface suitable to grinding tough or fibrous food objects. This suite of molar morphologies is also found to varying degrees in Pongo and Sivapithecus, but not in African apes and humans, and may be diagnostic of subfamily Ponginae.  相似文献   

15.
16.
Many living primates that feed on hard food have been observed to have thick-enameled molars. Among platyrrhine primates, members of the tribe Pitheciini (Cacajao, Chiropotes, and Pithecia) are the most specialized seed and nut predators, and Cebus apella also includes exceptionally hard foods in its diet. To examine the hypothesized relationship between thick enamel and hard-object feeding, we sectioned small samples of molars from the platyrrhine primates Aotus trivergatus, Ateles paniscus, Callicebus moloch, Cebus apella, Cacajao calvus, Chiropotes satanas, Pithecia monachus, and Pithecia pithecia. We measured relative enamel thickness and examined enamel microstructure, paying special attention to the development of prism decussation and its optical manifestation, Hunter-Schreger Bands (HSB). Cebus apella has thick enamel with well-defined but sinuous HSB overlain by a substantial layer of radial prisms. Aotus and Callicebus have thin enamel consisting primarily of radial enamel with no HSB, Ateles has thin enamel with moderately developed HSB and an outer layer of radial prisms, and the thin enamel of the pitheciins (Cacajao, Chiropotes, and Pithecia) has extremely well-defined HSB. Among platyrrhines, two groups that feed on hard objects process these hard foods in different ways. Cebus apella masticates hard and brittle seeds with its thick-enameled cheek teeth. Pitheciin sclerocarpic foragers open hard husks with their canines but chew relatively soft and pliable seeds with their molars. These results reveal that thick enamel per se is not a prerequisite for hard object feeding. The Miocene hominoid Kenyapithecus may have included hard objects in its diet, but its thick-enameled molars indicate that its feeding adaptations differed from those of the pitheciins. The morphology of both the anterior and posterior dentition, including enamel thickness and microstructure, should be taken into consideration when inferring the dietary regime of fossil species.  相似文献   

17.
釉面横纹的数目可用于推断个体牙齿的牙冠形成时间,在生长发育研究中具有重要的意义。本研究运用数码体视显微镜和扫描电镜观察了云南石灰坝禄丰禄丰古猿(简称禄丰古猿)30枚齿冠完整的前部牙齿,包括上下颌中门齿6枚、侧门齿10枚和犬齿14枚。根据唇侧面釉面横纹计数的观察结果,分别以7天和9天芮氏线生长周期,估算各齿型的牙冠形成时间,结果显示:以生长周期7天计算,中门齿牙冠形成时间约为3.6-4.1年,侧门齿牙冠形成时间约为2.7-3.7年,犬齿牙冠形成时间约为4.2-7.0;以生长周期9天计算,中门齿牙冠形成时间约为4.4-5.2年,侧门齿牙冠形成时间约为3.4-4.7年,犬齿牙冠形成时间约为5.2-8.8年。为更深入地了解禄丰古猿牙冠形成时间在不同齿型及性别间足否存在明显差异,本文用SPSS软件对其进行显著性差异检验。采用小样本平均值的t值假设检验(置信区间为95%),结果如下:禄丰古猿前部牙齿的牙冠形成时间在各类牙齿的上下颌中不存在显著性差异;犬齿牙冠形成时间存在非常显著的性别差异,雄性牙冠形成时间明显长于雌性,侧门齿也存在显著的性别差异,而中门齿性别间则无显著性差异。此外对禄丰古猿中门齿,侧门齿和犬齿的牙冠形成时间进行单因素方差分析并两两对比,结果显示中门齿与侧门齿的牙冠形成时间不存在显著性差异,而犬齿与中门齿和侧门齿均存在显著性差异,犬齿牙冠形成时间明显长于门齿。同时也对禄丰古猿前部牙齿的牙冠形成时间与齿冠高进行相关性分析,其结果表明两者有显著的正相关性。将禄丰古猿与其他古猿和现生大猿、南方古猿以及人属成员进行对比,结果显示其前部牙齿牙冠形成时间长于原修康尔猿、南方古猿、傍人、人属成员,接近于蝴蝶禄丰古猿和大猩猩,而明显小于黑猩猩、华南化石猩猩及现生猩猩。  相似文献   

18.
Martin (1983, 1985) reviewed the significance of enamel thickness in hominoid evolution. He studied cut faces of hominoid teeth using the scanning electron microscope and related enamel prism packing patterns to both enamel formation rates and enamel thickness, although he did not present primary data on formation rates, which he summarised as being either “fast” or “slow.” Martin concluded that thick enamel formed at a fast rate represented the ancestral condition in the human and great ape clade. Thin enamel in African apes reflected a secondary reduction in secretion rates, with outer enamel being formed at a slow rate. The present study on ground sections of great ape and human teeth, using polarised light microscopy, was designed to measure the spacing between incremental growth lines in enamel, including striae of Retzius and prism cross striations, to determine rates of enamel formation in hominoids. Measurements on stria spacing showed that striae generally diverged as they passed outwards through enamel in all taxa. Cross-striation spacings also increased from inner to outer enamel. Secretion rates did not fall into two exclusive categories but varied, giving a spectrum of values generally increasing from within outwards at any one crown level and reducing in cervical enamel. There was no evidence for a reduction in enamel formation rates in outer enamel among African apes. These findings cast doubt on the proposition that the common ancestor of great apes and man had thick enamel formed at a fast rate. It is possible that thin enamel was the primitive condition, in which case thick enamel in humans and in Sivapithecus is derived, suggesting that thick enamel on low cusped teeth evolved on more than one occasion.  相似文献   

19.
Comparative analyses of molar shape figure prominently in Miocene hominoid evolutionary studies, and incomplete understanding of functional and phylogenetic influences on molar shape variation can have direct consequences for the interpretation of fossil taxa. Molar flare is a shape trait whose polarity, phylogenetic distribution, and functional significance have been sources of contention. To clarify the determinants of molar flare variation in the hominoid radiation, a combination of statistical methods was employed to investigate the effects of diet, phylogeny, and geologic age upon several measures of molar shape, to identify interactions among these factors, and to estimate their relative influence. Classic indices of molar crown shape and cusp relief are highly significantly associated with diet and show no clear phylogenetic or temporal patterning. Correlations with diet are insignificant when phylogenetic effects are controlled, a result which is interpreted as an artifact of the distribution of folivory in the Miocene hominoid radiation. Possession of pronounced molar flare was found to be the primitive condition for Miocene hominoids, but molar flare reduction cannot be considered a crown hominoid synapomorphy. Molar flare is strongly correlated with geologic age but differs significantly among dietary categories when the effects of time are controlled. Among contemporaneous taxa, hard-object feeders consistently show the highest levels of flare. Molar flare reduction is hypothesized to arise from realignment of cusp positions to maximize molar shearing and increase working occlusal surface area, while variation in flare among contemporaneous taxa may be due, at least in part, to enamel thickness variation. The pronounced molar flare of Otavipithecus is interpreted as a primitive retention, although alternative dietary and phylogenetic interpretations cannot be excluded. A dramatic reversal of molar flare reduction in Mio-Pliocene hominins is interpreted as a synapomorphy of the crown hominin clade, thus supporting the hominin status of the Lukeino hominine. The last common ancestor of the Pan-Homo clade is predicted to have possessed relatively non-flaring molars, and implications of this hypothesis for early hominin recognition are discussed.  相似文献   

20.
赵凌霞 《人类学学报》2004,23(2):111-118
对出自禄丰石灰坝的26个禄丰古猿下颌齿列的246枚恒齿进行了观察研究,发现禄丰古猿具有普遍的带状釉质发育不全(LEH)现象,个体LEH比例为100%,恒齿LEH比例为85%。乳齿几乎没有LEH现象,第一恒臼齿的LEH比例也很低仅57%。根据牙齿萌出顺序及现代大猿的牙齿发育年龄特征,作者推断2—3岁之前的幼儿古猿很少出现釉质发育不全现象,这可能与母体的营养关照有关。禄丰古猿的LEH的发生频率具有明显的季节性,结合中新世晚期气候变化特征、古猿的生态环境、生活习性及食性特征分析,作者推测:季节性营养不良可能是造成禄丰古猿釉质发育不全的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号