首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1554篇
  免费   101篇
  国内免费   4篇
  2024年   5篇
  2023年   26篇
  2022年   44篇
  2021年   99篇
  2020年   96篇
  2019年   177篇
  2018年   105篇
  2017年   80篇
  2016年   90篇
  2015年   78篇
  2014年   92篇
  2013年   138篇
  2012年   122篇
  2011年   103篇
  2010年   67篇
  2009年   55篇
  2008年   51篇
  2007年   20篇
  2006年   33篇
  2005年   30篇
  2004年   25篇
  2003年   20篇
  2002年   21篇
  2001年   4篇
  2000年   5篇
  1999年   5篇
  1998年   4篇
  1997年   4篇
  1996年   2篇
  1994年   4篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1988年   4篇
  1987年   1篇
  1985年   2篇
  1983年   1篇
  1979年   2篇
  1977年   2篇
  1976年   1篇
  1975年   3篇
  1974年   4篇
  1973年   3篇
  1972年   5篇
  1970年   9篇
  1969年   3篇
  1968年   3篇
  1967年   2篇
  1966年   1篇
  1965年   1篇
排序方式: 共有1659条查询结果,搜索用时 875 毫秒
1.
2.
In this study, the chemical features of dendritic mesoporous silica nanoparticles (DMSNs) provided the opportunity to design a nanostructure with the capability to intelligently transport the payload to the tumor cells. In this regard, doxorubicin (DOX)-encapsulated DMSNs was electrostatically surface-coated with polycarboxylic acid dextran (PCAD) to provide biocompatible dextran-capped DMSNs (PCAD-DMSN@DOX) with controlled pH-dependent drug release. Moreover, a RNA aptamer against a cancer stem cell (CSC) marker, CD133 was covalently attached to the carboxyl groups of DEX to produce a CD133-PCAD-DMSN@DOX. Then, the fabricated nanosystem was utilized to efficiently deliver DOX to CD133+ colorectal cancer cells (HT29). The in vitro evaluation in terms of cellular uptake and cytotoxicity demonstrated that the CD133-PCAD-DMSN@DOX specifically targets HT29 as a CD133 overexpressed cancer cells confirmed by flow cytometry and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay. The potentially promising intelligent-targeted platform suggests that targeted dextran-capped DMSNs may find impressive application in cancer therapy.  相似文献   
3.
4.
Mixed convection peristaltic flow of Jeffrey nanofluid in a channel with compliant walls is addressed here. The present investigation includes the viscous dissipation, thermal radiation and Joule heating. Whole analysis is performed for velocity, thermal and concentration slip conditions. Related problems through long wavelength and low Reynolds number are examined for stream function, temperature and concentration. Impacts of thermal radiation, Hartman number, Brownian motion parameter, thermophoresis, Joule heating and slip parameters are explored in detail. Clearly temperature is a decreasing function of Hartman number and radiation parameter.  相似文献   
5.
The adsorption and immobilisation of human insulin onto the bio-compatible nanosheets including graphene monoxide, silicon carbide and boron nitride nanosheets were studied by molecular dynamics simulation at the temperature of 310 K. After equilibration, heating and 100 ns production molecular dynamic runs, it was found that the insulin was adsorbed and immobilised onto the considered surfaces in a native folded state. The structural parameters, including root-mean-square deviation and fluctuation, surface accessible solvent area, radius of gyration (Rg) and the distance between the centre of the mass of immobilised protein and the surface of the considered nanosheets, were measured, analysed and discussed. The energetics of the studied systems such as the interaction energy between protein and nanosheet was also measured and addressed. The discussions were centred on the structural and energetic parameters of the protein and nanosheets, including charge density, hydrophobicity, hydrophilicity and residue polarity. The results also showed that the active site of C-termini of chain B played an important role in the adsorption process and this could be helpful in the protection of insulin in its smart delivery and release applications.  相似文献   
6.
Cataract is the major reason for human blindness worldwide. α-Crystallin, as a key chaperone of eye lenses, keeps the lenticular tissues in its transparent state over time. In this study, cataract-causing familial mutations, P20R and A171T, were introduced in CRYАB gene. After successful expression in Escherichia coli and subsequent purification, the recombinant proteins were subjected to extensive structural and functional analyses using various spectroscopic techniques, gel electrophoresis, and electron microscopy. The results of fluorescence and Raman assessments suggest important but discreet conformational changes in human αB-Cry upon these cataractogenic mutations. Furthermore, the mutant proteins exhibited significant secondary structural alteration as revealed by FTIR and Raman spectroscopy. An increase in conformational stability was seen in the human αB-Cry bearing these congenital cataractogenic mutations. The oligomeric size distribution and chaperone-like activity of human αB-Cry were significantly altered by these mutations. The P20R mutant protein was observed to loose most of the chaperone-like activity. Finally, these cataractogenic mutant proteins exhibited an increased propensity to form the amyloid fibrils when incubated under environmental stress. Overall, the structural and functional changes in mutated human αB-Cry proteins can shed light on the pathogenic development of congenital cataracts.  相似文献   
7.
Mononuclear cells (MNC) derived from peripheral blood (PBMNC) of 23 normal donors and 4 AIDS patients, and from bone marrow (BMMNC) of 15 normal donors were incubated at 37 degrees C in culture medium alone or in the presence of either natural or recombinant human interleukin-2 (IL-2) or recombinant human interferon-gamma (IFN-gamma; 1-1,000 U/ml). The cultured cells were washed on days 1, 4 or 7 and tested for various immune functions in vitro and for cell surface phenotype. IL-2, but not IFN-gamma, was found mitogenic for both PBMNC and BMMNC. The natural killer (NK) activity of both PBMNC and BMMNC was the only function tested that was markedly augmented (over 100-fold compared to medium control) by both lymphokines. Pretreatment of PBMNC with IL-2 at greater than or equal to 10 U/ml profoundly suppressed (up to 90%) various functions, such as mitogenic responses (phytohemmagglutinin, concanavalin A, pokeweed mitogen), allogeneic mixed leukocyte reaction, antibody production and T cell colony formation in agar. In contrast, some BMMNC functions were elevated at low doses of IL-2 and IFN-gamma, and significant suppression of BMMNC was seen only with high doses of IL-2 (greater than or equal to 100 U/ml) and IFN-gamma (1,000 U/ml). IL-2 was by far more effective than IFN-gamma in both the amplification of NK activity and the suppression of most of the other functions. IL-2, but not IFN-gamma, was found to activate/induce suppressor cells and increased the proportion of Leu-2+ (CD8) cells in PBMNC; the suppressive effect was time- and dose-dependent. The IL-2-induced suppression could be diminished by inclusion of anti-IL-2 antibody during the pretreatment phase. Similar suppressive effects were noted in PBMNC from AIDS patients. These findings suggest that: (a) high-dose IL-2 may elicit immunosuppression which can be mediated by nondiscriminative highly cytotoxic cells (i.e. lymphokine-activated killer cells) and/or by noncytotoxic, nonspecific suppressor cells, and (b) that PBMNC respond differently to the lymphokines than do BMMNC.  相似文献   
8.
The mycotoxin, cyclopiazonic acid (CPA), was detected at concentrations as high as 9 ppm in 21 of 26 corn samples from a Bogor poultry feedmill. This is the first demonstration of the natural occurrence of CPA in Indonesia. CPA was always accompanied by other mycotoxins, especially aflatoxins, suggesting that the interactive toxicity of these mycotoxins to poultry should be investigated.  相似文献   
9.
10.
Naturally-derived drugs have drawn much attention in recent decades. Efficiency, lower toxicity, and economic reasons are some of their advantages that justify this broad range of administration for different diseases, including cancer. If we can find a specific combination that boosts the effects of their single therapy, leading to synergism effect, increased efficiency, and decreased toxicity, they can act even better. Quercetin and fisetin, two well-known flavonoids, have been used to fight against various cancers. In this study, we investigated their possible synergism quercetin and fisetin on MCF7, MDA-MB-231, BT549, T47D, and 4T1 breast cancer cell lines. Then the optimum combined dose was used to study their impacts on wound healing abilities and clonogenic properties. The real-time qPCR was used to study the expression of their validated downstream effectors in predicted pathways. A significant synergism effect (p < .01, combination index: <1) was observed for all cell lines. Combination therapy was significantly more effective in colony formation (p < .0001) and wound healing assays (p < .001) compared to single therapies. The expression level of potential effectors was also showed a greater change. In vivo study confirmed the in vitro results and showed how significantly (p < .001) their synergism promotes their singular function in inhibiting cancer progression. The breast cancer mouse models receiving combined therapy lived longer with higher average body weight and smaller tumor sizes. These results exhibit that quercetin and fisetin inhibit cancer cell proliferation, migration and colony formation synergistically, and matrix metalloproteinase signaling and apoptotic pathways are relatively responsible for inhibitory activities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号